These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25992964)

  • 41. A Generic Method for Preparing Hollow Mesoporous Silica Catalytic Nanoreactors with Metal Oxide Nanoparticles inside Their Cavities.
    Li K; Wei J; Yu H; Xu P; Wang J; Yin H; Cohen Stuart MA; Wang J; Zhou S
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16458-16463. PubMed ID: 30345627
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Size-controlled synthesis of conjugated polymer nanoparticles in confined nanoreactors.
    Deng S; Zhi J; Zhang X; Wu Q; Ding Y; Hu A
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14144-8. PubMed ID: 25318981
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency.
    Zhou N; Polavarapu L; Wang Q; Xu QH
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4844-50. PubMed ID: 25674821
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Size-selective yolk-shell nanoreactors with nanometer-thin porous polymer shells.
    Jia Y; Shmakov SN; Register P; Pinkhassik E
    Chemistry; 2015 Sep; 21(36):12709-14. PubMed ID: 26223572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction.
    Shang L; Jin L; Guo S; Zhai J; Dong S
    Langmuir; 2010 May; 26(9):6713-9. PubMed ID: 20017511
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crumpled Graphene-Storage Media for Hydrogen and Metal Nanoclusters.
    Safina LR; Krylova KA; Murzaev RT; Baimova JA; Mulyukov RR
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33919363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the crumpling of polycrystalline graphene by molecular dynamics simulation.
    Becton M; Zhang L; Wang X
    Phys Chem Chem Phys; 2015 Mar; 17(9):6297-304. PubMed ID: 25649010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Prospect of Photochemical Reactions in Confined Gel Media.
    Maiti B; Abramov A; Pérez-Ruiz R; Díaz Díaz D
    Acc Chem Res; 2019 Jul; 52(7):1865-1876. PubMed ID: 31016963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase transfer of oleic acid capped Ni(core)Ag(shell) nanoparticles assisted by the flexibility of oleic acid on the surface of silver.
    Bala T; Swami A; Prasad BL; Sastry M
    J Colloid Interface Sci; 2005 Mar; 283(2):422-31. PubMed ID: 15721914
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Compression and aggregation-resistant particles of crumpled soft sheets.
    Luo J; Jang HD; Sun T; Xiao L; He Z; Katsoulidis AP; Kanatzidis MG; Gibson JM; Huang J
    ACS Nano; 2011 Nov; 5(11):8943-9. PubMed ID: 21995602
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Core-Shell Palladium/MOF Platforms as Diffusion-Controlled Nanoreactors in Living Cells and Tissue Models.
    Martínez R; Carrillo-Carrión C; Destito P; Alvarez A; Tomás-Gamasa M; Pelaz B; Lopez F; Mascareñas JL; Del Pino P
    Cell Rep Phys Sci; 2020 Jun; 1(6):100076. PubMed ID: 32685935
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment.
    Glover RD; Miller JM; Hutchison JE
    ACS Nano; 2011 Nov; 5(11):8950-7. PubMed ID: 21985489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Asymmetric catalysis with metal complexes in nanoreactors.
    Yang Q; Han D; Yang H; Li C
    Chem Asian J; 2008 Sep; 3(8-9):1214-29. PubMed ID: 18677785
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In-situ confined growth of monodisperse pt nanoparticle@graphene nanobox composites as electrocatalytic nanoreactors.
    Lv Y; Fang Y; Wu Z; Qian X; Song Y; Che R; Asiri AM; Xia Y; Tu B; Zhao D
    Small; 2015 Feb; 11(8):1003-10. PubMed ID: 25331302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.