These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25993500)

  • 1. Phonon Engineering in Isotopically Disordered Silicon Nanowires.
    Mukherjee S; Givan U; Senz S; Bergeron A; Francoeur S; de la Mata M; Arbiol J; Sekiguchi T; Itoh KM; Isheim D; Seidman DN; Moutanabbir O
    Nano Lett; 2015 Jun; 15(6):3885-93. PubMed ID: 25993500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires.
    Ghossoub MG; Valavala KV; Seong M; Azeredo B; Hsu K; Sadhu JS; Singh PK; Sinha S
    Nano Lett; 2013 Apr; 13(4):1564-71. PubMed ID: 23464810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects.
    Jiang JW; Yang N; Wang BS; Rabczuk T
    Nano Lett; 2013 Apr; 13(4):1670-4. PubMed ID: 23517486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of ionized impurity scattering on the thermopower of Si nanowires.
    Oh JH; Jang MG; Shin M
    J Phys Condens Matter; 2013 Dec; 25(50):505301. PubMed ID: 24219975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires.
    Martin PN; Aksamija Z; Pop E; Ravaioli U
    Nano Lett; 2010 Apr; 10(4):1120-4. PubMed ID: 20222669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stranski-Krastanow growth of germanium on silicon nanowires.
    Pan L; Lew KK; Redwing JM; Dickey EC
    Nano Lett; 2005 Jun; 5(6):1081-5. PubMed ID: 15943447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High pressure Raman scattering of silicon nanowires.
    Khachadorian S; Papagelis K; Scheel H; Colli A; Ferrari AC; Thomsen C
    Nanotechnology; 2011 May; 22(19):195707. PubMed ID: 21430319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface faceting dependence of thermal transport in silicon nanowires.
    Sansoz F
    Nano Lett; 2011 Dec; 11(12):5378-82. PubMed ID: 22050128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total synthesis of isotopically enriched Si-29 silica NPs as potential spikes for isotope dilution quantification of natural silica NPs.
    Pálmai M; Szalay R; Bartczak D; Varga Z; Nagy LN; Gollwitzer C; Krumrey M; Goenaga-Infante H
    J Colloid Interface Sci; 2015 May; 445():161-165. PubMed ID: 25617615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.
    Yang L; Yang N; Li B
    Nano Lett; 2014; 14(4):1734-8. PubMed ID: 24559126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires.
    Hu M; Giapis KP; Goicochea JV; Zhang X; Poulikakos D
    Nano Lett; 2011 Feb; 11(2):618-23. PubMed ID: 21141989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation specific synthesis of kinked silicon nanowires grown by the vapour-liquid-solid mechanism.
    Hyun YJ; Lugstein A; Steinmair M; Bertagnolli E; Pongratz P
    Nanotechnology; 2009 Mar; 20(12):125606. PubMed ID: 19420475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the "forbidden" transverse-optical phonon in single strained silicon (100) nanowire.
    Tarun A; Hayazawa N; Ishitobi H; Kawata S; Reiche M; Moutanabbir O
    Nano Lett; 2011 Nov; 11(11):4780-8. PubMed ID: 21967475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport.
    Hippalgaonkar K; Huang B; Chen R; Sawyer K; Ercius P; Majumdar A
    Nano Lett; 2010 Nov; 10(11):4341-8. PubMed ID: 20939585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
    Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G
    Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percolating silicon nanowire networks with highly reproducible electrical properties.
    Serre P; Mongillo M; Periwal P; Baron T; Ternon C
    Nanotechnology; 2015 Jan; 26(1):015201. PubMed ID: 25483713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon nanowire Esaki diodes.
    Schmid H; Bessire C; Björk MT; Schenk A; Riel H
    Nano Lett; 2012 Feb; 12(2):699-703. PubMed ID: 22214422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects.
    Bui CT; Xie R; Zheng M; Zhang Q; Sow CH; Li B; Thong JT
    Small; 2012 Mar; 8(5):738-45. PubMed ID: 22162412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.