BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25993620)

  • 21. Atomic-scale simulation to study the dynamical properties and local structure of Cu-Zr and Ni-Zr metallic glass-forming alloys.
    Yang MH; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2016 Mar; 18(10):7169-83. PubMed ID: 26888279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicted Optimum Composition for the Glass-Forming Ability of Bulk Amorphous Alloys: Application to Cu-Zr-Al.
    An Q; Samwer K; Goddard WA; Johnson WL; Jaramillo-Botero A; Garret G; Demetriou MD
    J Phys Chem Lett; 2012 Nov; 3(21):3143-8. PubMed ID: 26296020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ab initio molecular dynamics simulations of short-range order in Zr₅₀Cu₄₅Al₅ and Cu₅₀Zr₄₅Al₅ metallic glasses.
    Huang Y; Huang L; Wang CZ; Kramer MJ; Ho KM
    J Phys Condens Matter; 2016 Mar; 28(8):085102. PubMed ID: 26828778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-diffusion of supercooled o-terphenyl near the glass transition temperature.
    Mapes MK; Swallen SF; Ediger MD
    J Phys Chem B; 2006 Jan; 110(1):507-11. PubMed ID: 16471562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing.
    Zhang K; Dice B; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Aug; 143(5):054501. PubMed ID: 26254655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excess-entropy scaling in supercooled binary mixtures.
    Bell IH; Dyre JC; Ingebrigtsen TS
    Nat Commun; 2020 Aug; 11(1):4300. PubMed ID: 32855393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signatures of fragile-to-strong transition in a binary metallic glass-forming liquid.
    Lad KN; Jakse N; Pasturel A
    J Chem Phys; 2012 Mar; 136(10):104509. PubMed ID: 22423850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pressure effects on structure and dynamics of metallic glass-forming liquid.
    Hu YC; Guan PF; Wang Q; Yang Y; Bai HY; Wang WH
    J Chem Phys; 2017 Jan; 146(2):024507. PubMed ID: 28088136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structure of a metallic glass system using EXELFS and EXAFS as complementary probes.
    Alamgir FM; Jain H; Williams DB; Schwarz RB
    Micron; 2003; 34(8):433-9. PubMed ID: 14680930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size effect on atomic structure in low-dimensional Cu-Zr amorphous systems.
    Zhang WB; Liu J; Lu SH; Zhang H; Wang H; Wang XD; Cao QP; Zhang DX; Jiang JZ
    Sci Rep; 2017 Aug; 7(1):7291. PubMed ID: 28779092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural mechanism of the enhanced glass-forming ability in multicomponent alloys with positive heat of mixing.
    Wu SY; Wei SH; Guo GQ; Wang JG; Yang L
    Sci Rep; 2016 Nov; 6():38098. PubMed ID: 27897257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breakdown of the Stokes-Einstein relation in two, three, and four dimensions.
    Sengupta S; Karmakar S; Dasgupta C; Sastry S
    J Chem Phys; 2013 Mar; 138(12):12A548. PubMed ID: 23556799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid.
    Jeong D; Choi MY; Kim HJ; Jung Y
    Phys Chem Chem Phys; 2010 Feb; 12(8):2001-10. PubMed ID: 20145870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids.
    Wang X; Xu WS; Zhang H; Douglas JF
    J Chem Phys; 2019 Nov; 151(18):184503. PubMed ID: 31731847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced strength and extent of dynamic heterogeneity in a strong glass former as compared to fragile glass formers.
    Staley H; Flenner E; Szamel G
    J Chem Phys; 2015 Dec; 143(24):244501. PubMed ID: 26723686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A structural signature of the breakdown of the Stokes-Einstein relation in metallic liquids.
    Pan SP; Feng SD; Qiao JW; Niu XF; Wang WM; Qin JY
    Phys Chem Chem Phys; 2017 Aug; 19(33):22094-22098. PubMed ID: 28795698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fractal atomic-level percolation in metallic glasses.
    Chen DZ; Shi CY; An Q; Zeng Q; Mao WL; Goddard WA; Greer JR
    Science; 2015 Sep; 349(6254):1306-10. PubMed ID: 26383945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water.
    Mazza MG; Giovambattista N; Stanley HE; Starr FW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031203. PubMed ID: 17930235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer simulation study of thermodynamic scaling of dynamics of 2Ca(NO3)2·3KNO3.
    Ribeiro MC; Scopigno T; Ruocco G
    J Chem Phys; 2011 Oct; 135(16):164510. PubMed ID: 22047255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct imaging of local atomic ordering in a Pd-Ni-P bulk metallic glass using Cs-corrected transmission electron microscopy.
    Hirata A; Hirotsu Y; Nieh TG; Ohkubo T; Tanaka N
    Ultramicroscopy; 2007; 107(2-3):116-23. PubMed ID: 16872747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.