These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
546 related articles for article (PubMed ID: 25993649)
1. Transcripts and MicroRNAs Responding to Salt Stress in Musa acuminata Colla (AAA Group) cv. Berangan Roots. Lee WS; Gudimella R; Wong GR; Tammi MT; Khalid N; Harikrishna JA PLoS One; 2015; 10(5):e0127526. PubMed ID: 25993649 [TBL] [Abstract][Full Text] [Related]
2. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity. Bazakos C; Manioudaki ME; Sarropoulou E; Spano T; Kalaitzis P PLoS One; 2015; 10(11):e0143000. PubMed ID: 26576008 [TBL] [Abstract][Full Text] [Related]
3. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. Carnavale Bottino M; Rosario S; Grativol C; Thiebaut F; Rojas CA; Farrineli L; Hemerly AS; Ferreira PC PLoS One; 2013; 8(3):e59423. PubMed ID: 23544066 [TBL] [Abstract][Full Text] [Related]
4. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. Feng J; Wang J; Fan P; Jia W; Nie L; Jiang P; Chen X; Lv S; Wan L; Chang S; Li S; Li Y BMC Plant Biol; 2015 Feb; 15():63. PubMed ID: 25848810 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Das P; Majumder AL Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943 [TBL] [Abstract][Full Text] [Related]
6. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress. Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590 [TBL] [Abstract][Full Text] [Related]
7. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide transcriptome analysis and identification of benzothiadiazole-induced genes and pathways potentially associated with defense response in banana. Cheng Z; Yu X; Li S; Wu Q BMC Genomics; 2018 Jun; 19(1):454. PubMed ID: 29898655 [TBL] [Abstract][Full Text] [Related]
9. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. Molina C; Zaman-Allah M; Khan F; Fatnassi N; Horres R; Rotter B; Steinhauer D; Amenc L; Drevon JJ; Winter P; Kahl G BMC Plant Biol; 2011 Feb; 11():31. PubMed ID: 21320317 [TBL] [Abstract][Full Text] [Related]
10. Global Gene Expression of Kosteletzkya virginica Seedlings Responding to Salt Stress. Tang X; Wang H; Shao C; Shao H PLoS One; 2015; 10(4):e0124421. PubMed ID: 25901608 [TBL] [Abstract][Full Text] [Related]
11. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Long RC; Li MN; Kang JM; Zhang TJ; Sun Y; Yang QC Physiol Plant; 2015 May; 154(1):13-27. PubMed ID: 25156209 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. Xu L; Wang Y; Zhai L; Xu Y; Wang L; Zhu X; Gong Y; Yu R; Limera C; Liu L J Exp Bot; 2013 Nov; 64(14):4271-87. PubMed ID: 24014874 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the alfalfa root transcriptome in response to salinity stress. Postnikova OA; Shao J; Nemchinov LG Plant Cell Physiol; 2013 Jul; 54(7):1041-55. PubMed ID: 23592587 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.). Zhou Y; Yang P; Cui F; Zhang F; Luo X; Xie J PLoS One; 2016; 11(1):e0146242. PubMed ID: 26752408 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome sequencing and comparative analysis of differentially-expressed isoforms in the roots of Halogeton glomeratus under salt stress. Yao L; Wang J; Li B; Meng Y; Ma X; Si E; Ren P; Yang K; Shang X; Wang H Gene; 2018 Mar; 646():159-168. PubMed ID: 29292193 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. Peng Z; He S; Gong W; Sun J; Pan Z; Xu F; Lu Y; Du X BMC Genomics; 2014 Sep; 15(1):760. PubMed ID: 25189468 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. Zhang Q; Zhao C; Li M; Sun W; Liu Y; Xia H; Sun M; Li A; Li C; Zhao S; Hou L; Picimbon JF; Wang X; Zhao Y BMC Plant Biol; 2013 Nov; 13():180. PubMed ID: 24237587 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide identification and characterization of Eutrema salsugineum microRNAs for salt tolerance. Wu Y; Guo J; Cai Y; Gong X; Xiong X; Qi W; Pang Q; Wang X; Wang Y Physiol Plant; 2016 Aug; 157(4):453-68. PubMed ID: 26806325 [TBL] [Abstract][Full Text] [Related]
19. High efficiency transformation of banana [Musa acuminata L. cv. Matti (AA)] for enhanced tolerance to salt and drought stress through overexpression of a peanut salinity-induced pathogenesis-related class 10 protein. Rustagi A; Jain S; Kumar D; Shekhar S; Jain M; Bhat V; Sarin NB Mol Biotechnol; 2015 Jan; 57(1):27-35. PubMed ID: 25173686 [TBL] [Abstract][Full Text] [Related]
20. Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006. Gamez RM; Rodríguez F; Vidal NM; Ramirez S; Vera Alvarez R; Landsman D; Mariño-Ramírez L BMC Genomics; 2019 May; 20(1):378. PubMed ID: 31088352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]