BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 25993898)

  • 41. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis.
    Xu X; Jiang Z; Wang J; Ren Y; Wu A
    Electrophoresis; 2020 Jun; 41(10-11):933-951. PubMed ID: 32144938
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Circulating Tumor Cells: A New Window for Diagnosis and Evaluation of Cancer.
    Liu M; Tang M; Li M; Gao F; Shi C; Hou J; Zeng W
    Anticancer Agents Med Chem; 2016; 16(12):1529-1540. PubMed ID: 26902602
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells.
    Kang JH; Krause S; Tobin H; Mammoto A; Kanapathipillai M; Ingber DE
    Lab Chip; 2012 Jun; 12(12):2175-81. PubMed ID: 22453808
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy.
    Descamps L; Le Roy D; Deman AL
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216097
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Circulating tumor cells in hepatocellular carcinoma: detection techniques, clinical implications, and future perspectives.
    Zhang Y; Li J; Cao L; Xu W; Yin Z
    Semin Oncol; 2012 Aug; 39(4):449-60. PubMed ID: 22846862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidic-Assisted CTC Isolation and In Situ Monitoring Using Smart Magnetic Microgels.
    Seyfoori A; Seyyed Ebrahimi SA; Samandari M; Samiei E; Stefanek E; Garnis C; Akbari M
    Small; 2023 Apr; 19(16):e2205320. PubMed ID: 36720798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells.
    Bhat MP; Thendral V; Uthappa UT; Lee KH; Kigga M; Altalhi T; Kurkuri MD; Kant K
    Biosensors (Basel); 2022 Apr; 12(4):. PubMed ID: 35448280
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aptamer-conjugated graphene oxide membranes for highly efficient capture and accurate identification of multiple types of circulating tumor cells.
    Viraka Nellore BP; Kanchanapally R; Pramanik A; Sinha SS; Chavva SR; Hamme A; Ray PC
    Bioconjug Chem; 2015 Feb; 26(2):235-42. PubMed ID: 25565372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rhipsalis (Cactaceae)-like Hierarchical Structure Based Microfluidic Chip for Highly Efficient Isolation of Rare Cancer Cells.
    Yan S; Zhang X; Dai X; Feng X; Du W; Liu BF
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33457-33463. PubMed ID: 27960420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanobiotechnology for the capture and manipulation of circulating tumor cells.
    Hughes AD; King MR
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(3):291-309. PubMed ID: 22162415
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients.
    Tan SJ; Lakshmi RL; Chen P; Lim WT; Yobas L; Lim CT
    Biosens Bioelectron; 2010 Dec; 26(4):1701-5. PubMed ID: 20719496
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rethinking liquid biopsy: Microfluidic assays for mobile tumor cells in human body fluids.
    Neoh KH; Hassan AA; Chen A; Sun Y; Liu P; Xu KF; Wong AST; Han RPS
    Biomaterials; 2018 Jan; 150():112-124. PubMed ID: 29035737
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterizing circulating tumor cells using affinity-based microfluidic capture and AFM-based biomechanics.
    Deliorman M; Glia A; Qasaimeh MA
    STAR Protoc; 2022 Jun; 3(2):101433. PubMed ID: 35664257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances in nanotechnology-based detection and separation of circulating tumor cells.
    Myung JH; Tam KA; Park SJ; Cha A; Hong S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(2):223-39. PubMed ID: 26296639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Advances in isolation and enrichment of circulating tumor cells in microfluidic chips].
    Du J; Liu X; Xu X
    Se Pu; 2014 Jan; 32(1):7-12. PubMed ID: 24783862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer.
    Cohen SJ; Alpaugh RK; Gross S; O'Hara SM; Smirnov DA; Terstappen LW; Allard WJ; Bilbee M; Cheng JD; Hoffman JP; Lewis NL; Pellegrino A; Rogatko A; Sigurdson E; Wang H; Watson JC; Weiner LM; Meropol NJ
    Clin Colorectal Cancer; 2006 Jul; 6(2):125-32. PubMed ID: 16945168
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Droplet microfluidics for CTC-based liquid biopsy: a review.
    Jiang L; Yang H; Cheng W; Ni Z; Xiang N
    Analyst; 2023 Jan; 148(2):203-221. PubMed ID: 36508171
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microdevice in Cellular Pathology: Microfluidic Platforms for Fluorescence in situ Hybridization and Analysis of Circulating Tumor Cells.
    Sato K
    Anal Sci; 2015; 31(9):867-73. PubMed ID: 26353951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Filter-based isolation, enrichment, and characterization of circulating tumor cells.
    Khetani S; Mohammadi M; Nezhad AS
    Biotechnol Bioeng; 2018 Oct; 115(10):2504-2529. PubMed ID: 29989145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanotentacle-structured magnetic particles for efficient capture of circulating tumor cells.
    Jo SM; Lee JJ; Heu W; Kim HS
    Small; 2015 Apr; 11(16):1975-82. PubMed ID: 25504978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.