BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 25993898)

  • 81. Emerging Nanotechnologies for Liquid Biopsy: The Detection of Circulating Tumor Cells and Extracellular Vesicles.
    Li W; Wang H; Zhao Z; Gao H; Liu C; Zhu L; Wang C; Yang Y
    Adv Mater; 2019 Nov; 31(45):e1805344. PubMed ID: 30589111
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Microfluidics for cell sorting and single cell analysis from whole blood.
    Vaidyanathan R; Yeo T; Lim CT
    Methods Cell Biol; 2018; 147():151-173. PubMed ID: 30165956
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Progress in Circulating Tumor Cell Research Using Microfluidic Devices.
    Gwak H; Kim J; Kashefi-Kheyrabadi L; Kwak B; Hyun KA; Jung HI
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424286
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Combined immunomagnetic capture coupled with ultrasensitive plasmonic detection of circulating tumor cells in blood.
    Shen W; Song Y; Burklund A; Le B; Zhang R; Wang L; Xi Y; Qian K; Shen T; Zhang JXJ
    Biomed Microdevices; 2018 Nov; 20(4):99. PubMed ID: 30417219
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Microfluidics for Cancer Biomarker Discovery, Research, and Clinical Application.
    Žvirblytė J; Mažutis L
    Adv Exp Med Biol; 2022; 1379():499-524. PubMed ID: 35761005
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics.
    Warkiani ME; Khoo BL; Wu L; Tay AK; Bhagat AA; Han J; Lim CT
    Nat Protoc; 2016 Jan; 11(1):134-48. PubMed ID: 26678083
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Rational Design of Materials Interface for Efficient Capture of Circulating Tumor Cells.
    Li YQ; Chandran BK; Lim CT; Chen X
    Adv Sci (Weinh); 2015 Nov; 2(11):1500118. PubMed ID: 27980914
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Biology, detection, and clinical implications of circulating tumor cells.
    Joosse SA; Gorges TM; Pantel K
    EMBO Mol Med; 2015 Jan; 7(1):1-11. PubMed ID: 25398926
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Pathology of circulating tumor cells and the available capture tools (Review).
    Guan Y; Xu F; Tian J; Chen H; Yang C; Huang S; Gao K; Wan Z; Li M; He M; Chong T
    Oncol Rep; 2020 May; 43(5):1355-1364. PubMed ID: 32323847
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Recent advances in integrated microfluidics for liquid biopsies and future directions.
    Zhuang J; Xia L; Zou Z; Yin J; Lin N; Mu Y
    Biosens Bioelectron; 2022 Dec; 217():114715. PubMed ID: 36174359
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Circulating tumor cells: a window into cancer biology and metastasis.
    Maheswaran S; Haber DA
    Curr Opin Genet Dev; 2010 Feb; 20(1):96-9. PubMed ID: 20071161
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Circulating tumor cells: approaches to isolation and characterization.
    Yu M; Stott S; Toner M; Maheswaran S; Haber DA
    J Cell Biol; 2011 Feb; 192(3):373-82. PubMed ID: 21300848
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Microfluidics for label-free sorting of rare circulating tumor cells.
    Zhu S; Jiang F; Han Y; Xiang N; Ni Z
    Analyst; 2020 Nov; 145(22):7103-7124. PubMed ID: 33001061
    [TBL] [Abstract][Full Text] [Related]  

  • 94. CTCs could guide cancer therapy.
    Cancer Discov; 2014 Sep; 4(9):981-2. PubMed ID: 25185174
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Circulating Tumor Cell Enrichment Technologies.
    Boya M; Chu CH; Liu R; Ozkaya-Ahmadov T; Sarioglu AF
    Recent Results Cancer Res; 2020; 215():25-55. PubMed ID: 31605222
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy.
    Siemer S; Wünsch D; Khamis A; Lu Q; Scherberich A; Filippi M; Krafft MP; Hagemann J; Weiss C; Ding GB; Stauber RH; Gribko A
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32098406
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system.
    Huang YY; Hoshino K; Chen P; Wu CH; Lane N; Huebschman M; Liu H; Sokolov K; Uhr JW; Frenkel EP; Zhang JXJ
    Biomed Microdevices; 2013 Aug; 15(4):673-681. PubMed ID: 23109037
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A Method for Detecting Circulating Tumor Cells Based on the Measurement of Single-Cell Metabolism in Droplet-Based Microfluidics.
    Del Ben F; Turetta M; Celetti G; Piruska A; Bulfoni M; Cesselli D; Huck WT; Scoles G
    Angew Chem Int Ed Engl; 2016 Jul; 55(30):8581-4. PubMed ID: 27247024
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Highly-sensitive capture of circulating tumor cells using micro-ellipse filters.
    Chen H; Cao B; Sun B; Cao Y; Yang K; Lin YS
    Sci Rep; 2017 Apr; 7(1):610. PubMed ID: 28377598
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Liquid biopsy on chip: a paradigm shift towards the understanding of cancer metastasis.
    Tadimety A; Syed A; Nie Y; Long CR; Kready KM; Zhang JX
    Integr Biol (Camb); 2017 Jan; 9(1):22-49. PubMed ID: 27929582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.