These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 25994279)
21. [Analysis of gene expression of Tetrahymena thermophila treated with Panax japonicas]. Chai XC; Yang WT; Tang Q; Ma XF; Xiong J; Wang P; Miao W Zhongguo Zhong Yao Za Zhi; 2019 Jun; 44(12):2580-2587. PubMed ID: 31359727 [TBL] [Abstract][Full Text] [Related]
22. PHLP2 is essential and plays a role in ciliogenesis and microtubule assembly in Tetrahymena thermophila. Bregier C; Krzemień-Ojak L; Włoga D; Jerka-Dziadosz M; Joachimiak E; Batko K; Filipiuk I; Smietanka U; Gaertig J; Fabczak S; Fabczak H J Cell Physiol; 2013 Nov; 228(11):2175-89. PubMed ID: 23588994 [TBL] [Abstract][Full Text] [Related]
23. Regulation of ribosome phosphorylation and antibiotic sensitivity in Tetrahymena thermophila: A correlation. Hallberg RL; Wilson PG; Sutton C Cell; 1981 Oct; 26(1 Pt 1):47-56. PubMed ID: 7326742 [TBL] [Abstract][Full Text] [Related]
25. Organelle specific fluorescent phenomics and transcriptomic profiling to evaluate cellular response to tris(1,3 dichloro 2 propyl)phosphate. Haque MM; Voitsitskyi T; Lee JS Sci Rep; 2022 Mar; 12(1):4660. PubMed ID: 35304560 [TBL] [Abstract][Full Text] [Related]
26. Total internal reflection fluorescence microscopy of intraflagellar transport in Tetrahymena thermophila. Jiang YY; Lechtreck K; Gaertig J Methods Cell Biol; 2015; 127():445-56. PubMed ID: 25837403 [TBL] [Abstract][Full Text] [Related]
27. New Tetrahymena basal body protein components identify basal body domain structure. Kilburn CL; Pearson CG; Romijn EP; Meehl JB; Giddings TH; Culver BP; Yates JR; Winey M J Cell Biol; 2007 Sep; 178(6):905-12. PubMed ID: 17785518 [TBL] [Abstract][Full Text] [Related]
28. Bioconcentration, metabolism and alterations of thyroid hormones of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) in Zebrafish. Xu T; Wang Q; Shi Q; Fang Q; Guo Y; Zhou B Environ Toxicol Pharmacol; 2015 Sep; 40(2):581-6. PubMed ID: 26356387 [TBL] [Abstract][Full Text] [Related]
29. Effect of the flame retardant tris (1,3-dichloro-2-propyl) phosphate (TDCPP) on Na Latronico S; Giordano ME; Urso E; Lionetto MG; Schettino T Toxicol Mech Methods; 2018 Oct; 28(8):599-606. PubMed ID: 29783866 [TBL] [Abstract][Full Text] [Related]
30. Metabolomics reveals that tris(1,3-dichloro-2-propyl)phosphate (TDCPP) causes disruption of membrane lipids in microalga Scenedesmus obliquus. Wang L; Huang X; Laserna AKC; Li SFY Sci Total Environ; 2020 Mar; 708():134498. PubMed ID: 31796289 [TBL] [Abstract][Full Text] [Related]
31. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos. Farhat A; Buick JK; Williams A; Yauk CL; O'Brien JM; Crump D; Williams KL; Chiu S; Kennedy SW Toxicol Appl Pharmacol; 2014 Mar; 275(2):104-12. PubMed ID: 24407104 [TBL] [Abstract][Full Text] [Related]
32. Effects of TDCPP or TPP on gene transcriptions and hormones of HPG axis, and their consequences on reproduction in adult zebrafish (Danio rerio). Liu X; Ji K; Jo A; Moon HB; Choi K Aquat Toxicol; 2013 Jun; 134-135():104-11. PubMed ID: 23603146 [TBL] [Abstract][Full Text] [Related]
33. Tris (1,3-dichloro-2-propyl) phosphate treatment induces DNA damage, cell cycle arrest and apoptosis in murine RAW264.7 macrophages. Zhang W; Wang R; Giesy JP; Li Y; Wang P J Toxicol Sci; 2019; 44(3):134-144. PubMed ID: 30842366 [TBL] [Abstract][Full Text] [Related]
34. Proteomic analyses of early response of unicellular eukaryotic microorganism Tetrahymena thermophila exposed to TiO₂ particles. Rajapakse K; Drobne D; Kastelec D; Kogej K; Makovec D; Gallampois C; Amelina H; Danielsson G; Fanedl L; Marinsek-Logar R; Cristobal S Nanotoxicology; 2016; 10(5):542-56. PubMed ID: 26524663 [TBL] [Abstract][Full Text] [Related]
35. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish. Wang Q; Lam JC; Man YC; Lai NL; Kwok KY; Guo Yy; Lam PK; Zhou B Aquat Toxicol; 2015 Jan; 158():108-15. PubMed ID: 25461749 [TBL] [Abstract][Full Text] [Related]
36. Molecular genetic analysis of an SNF2/brahma-related gene in Tetrahymena thermophila suggests roles in growth and nuclear development. Fillingham JS; Garg J; Tsao N; Vythilingum N; Nishikawa T; Pearlman RE Eukaryot Cell; 2006 Aug; 5(8):1347-59. PubMed ID: 16896218 [TBL] [Abstract][Full Text] [Related]
37. Cloning and characterization of the gene encoding the highly expressed ribosomal protein l3 of the ciliated protozoan Tetrahymena thermophila. Evidence for differential codon usage in highly expressed genes. Larsen LK; Andreasen PH; Dreisig H; Palm L; Nielsen H; Engberg J; Kristiansen K Cell Biol Int; 1999; 23(8):551-60. PubMed ID: 10704239 [TBL] [Abstract][Full Text] [Related]
38. Subcellular localization and role of Ran1 in Tetrahymena thermophila amitotic macronucleus. Liang H; Xu J; Zhao D; Tian H; Yang X; Liang A; Wang W FEBS J; 2012 Jul; 279(14):2520-33. PubMed ID: 22594798 [TBL] [Abstract][Full Text] [Related]
39. The unique N-terminal insert in the ribosomal protein, phosphoprotein P0, of Tetrahymena thermophila: Bioinformatic evidence for an interaction with 26S rRNA. Pagano GJ; King RS; Martin LM; Hufnagel LA Proteins; 2015 Jun; 83(6):1078-90. PubMed ID: 25820769 [TBL] [Abstract][Full Text] [Related]
40. Preliminary results from structural systems biology approach in Tetrahymena thermophila reveal novel perspectives for this toxicological model. Chasapis CT Arch Microbiol; 2019 Jan; 201(1):51-59. PubMed ID: 30194464 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]