These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25994333)

  • 61. Simultaneous Nanomechanical and Electrochemical Mapping: Combining Peak Force Tapping Atomic Force Microscopy with Scanning Electrochemical Microscopy.
    Knittel P; Mizaikoff B; Kranz C
    Anal Chem; 2016 Jun; 88(12):6174-8. PubMed ID: 27203837
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sub-nanometre mapping of the aquaporin-water interface using multifrequency atomic force microscopy.
    Ricci M; Quinlan RA; Voïtchovsky K
    Soft Matter; 2016 Dec; 13(1):187-195. PubMed ID: 27373564
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-speed atomic force microscope based on an astigmatic detection system.
    Liao HS; Chen YH; Ding RF; Huang HF; Wang WM; Hwu ET; Huang KY; Chang CS; Hwang IS
    Rev Sci Instrum; 2014 Oct; 85(10):103710. PubMed ID: 25362406
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modelling oscillatory flexure modes of an atomic force microscope cantilever in contact mode whilst imaging at high speed.
    Payton OD; Picco L; Miles MJ; Homer ME; Champneys AR
    Nanotechnology; 2012 Jul; 23(26):265702. PubMed ID: 22699489
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Improving image contrast and material discrimination with nonlinear response in bimodal atomic force microscopy.
    Forchheimer D; Forchheimer R; Haviland DB
    Nat Commun; 2015 Feb; 6():6270. PubMed ID: 25665933
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanomechanical mapping in air or vacuum using multi-harmonic signals in tapping mode atomic force microscopy.
    Huda Shaik N; G Reifenberger R; Raman A
    Nanotechnology; 2020 Nov; 31(45):455502. PubMed ID: 32413884
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dual resonance excitation system for the contact mode of atomic force microscopy.
    Kopycinska-Müller M; Striegler A; Schlegel R; Kuzeyeva N; Köhler B; Wolter KJ
    Rev Sci Instrum; 2012 Apr; 83(4):043703. PubMed ID: 22559535
    [TBL] [Abstract][Full Text] [Related]  

  • 68. 360° multiparametric imaging atomic force microscopy: A method for three-dimensional nanomechanical mapping.
    Lu H; Wen Y; Zhang H; Xie H; Shen Y
    Ultramicroscopy; 2019 Jan; 196():83-87. PubMed ID: 30300820
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Amplitude modulation dynamic force microscopy imaging in liquids with atomic resolution: comparison of phase contrasts in single and dual mode operation.
    Ebeling D; Solares SD
    Nanotechnology; 2013 Apr; 24(13):135702. PubMed ID: 23478354
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fast nanotopography imaging using a high speed cantilever with integrated heater-thermometer.
    Lee B; Somnath S; King WP
    Nanotechnology; 2013 Apr; 24(13):135501. PubMed ID: 23478235
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhancing higher-order eigenmodes of AFM using bridge/cantilever coupled system.
    Dou Z; Qian J; Li Y; Lin R; Wang T; Wang J; Cheng P; Xu Z
    Micron; 2021 Nov; 150():103147. PubMed ID: 34534920
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhancing phase contrast for bimodal AFM imaging in low quality factor environments.
    Damircheli M; Eslami B
    Ultramicroscopy; 2019 Sep; 204():18-26. PubMed ID: 31112833
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Energy transfer between eigenmodes in multimodal atomic force microscopy.
    An S; Solares SD; Santos S; Ebeling D
    Nanotechnology; 2014 Nov; 25(47):475701. PubMed ID: 25369864
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multifrequency high-speed phase-modulation atomic force microscopy in liquids.
    Li YJ; Takahashi K; Kobayashi N; Naitoh Y; Kageshima M; Sugawara Y
    Ultramicroscopy; 2010 May; 110(6):582-5. PubMed ID: 20219283
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Improving the signal-to-noise ratio of high-speed contact mode atomic force microscopy.
    Payton OD; Picco L; Miles MJ; Homer ME; Champneys AR
    Rev Sci Instrum; 2012 Aug; 83(8):083710. PubMed ID: 22938306
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optimization of phase contrast in bimodal amplitude modulation AFM.
    Damircheli M; Payam AF; Garcia R
    Beilstein J Nanotechnol; 2015; 6():1072-81. PubMed ID: 26114079
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy.
    Rajabifar B; Bajaj A; Reifenberger R; Proksch R; Raman A
    Nanoscale; 2021 Oct; 13(41):17428-17441. PubMed ID: 34647552
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An atomic force microscope tip designed to measure time-varying nanomechanical forces.
    Sahin O; Magonov S; Su C; Quate CF; Solgaard O
    Nat Nanotechnol; 2007 Aug; 2(8):507-14. PubMed ID: 18654349
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Real-time scan speed control of the atomic force microscopy for reducing imaging time based on sample topography.
    Zhang Y; Li Y; Shan G; Chen Y; Wang Z; Qian J
    Micron; 2018 Mar; 106():1-6. PubMed ID: 29278760
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Numerical simulation of nano scanning in intermittent-contact mode AFM under Q control.
    Varol A; Gunev I; Orun B; Basdogan C
    Nanotechnology; 2008 Feb; 19(7):075503. PubMed ID: 21817636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.