BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 25994677)

  • 21. Predation risks of signalling and searching: bats prefer moving katydids.
    Geipel I; Kernan CE; Litterer AS; Carter GG; Page RA; Ter Hofstede HM
    Biol Lett; 2020 Apr; 16(4):20190837. PubMed ID: 32315594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary escalation: the bat-moth arms race.
    Ter Hofstede HM; Ratcliffe JM
    J Exp Biol; 2016 Jun; 219(Pt 11):1589-602. PubMed ID: 27252453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural representation of bat predation risk and evasive flight in moths: A modelling approach.
    Goerlitz HR; Hofstede HMT; Holderied MW
    J Theor Biol; 2020 Feb; 486():110082. PubMed ID: 31734242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What Does an Insect Hear? Reassessing the Role of Hearing in Predator Avoidance with Insights from Vertebrate Prey.
    Yack JE; Raven BH; Leveillee MB; Naranjo M
    Integr Comp Biol; 2020 Nov; 60(5):1036-1057. PubMed ID: 32717080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing niche partitioning of co-occurring sibling bat species by DNA metabarcoding.
    Arrizabalaga-Escudero A; Clare EL; Salsamendi E; Alberdi A; Garin I; Aihartza J; Goiti U
    Mol Ecol; 2018 Mar; 27(5):1273-1283. PubMed ID: 29411450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey.
    Clare EL; Fraser EE; Braid HE; Fenton MB; Hebert PD
    Mol Ecol; 2009 Jun; 18(11):2532-42. PubMed ID: 19457192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cues for eavesdroppers: do frog calls indicate prey density and quality?
    Bernal XE; Page RA; Rand AS; Ryan MJ
    Am Nat; 2007 Mar; 169(3):409-15. PubMed ID: 17230403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis.
    Geipel I; Jung K; Kalko EK
    Proc Biol Sci; 2013 Mar; 280(1754):20122830. PubMed ID: 23325775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size and quality information in acoustic signals of Rhinolophus ferrumequinum in distress situations.
    Jiang T; Huang X; Wu H; Feng J
    Physiol Behav; 2017 May; 173():252-257. PubMed ID: 28238774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey.
    Geipel I; Steckel J; Tschapka M; Vanderelst D; Schnitzler HU; Kalko EKV; Peremans H; Simon R
    Curr Biol; 2019 Aug; 29(16):2731-2736.e3. PubMed ID: 31378617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of acoustic clutter on prey detection by bats.
    Arlettaz R; Jones G; Racey PA
    Nature; 2001 Dec; 414(6865):742-5. PubMed ID: 11742397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Risks of multimodal signaling: bat predators attend to dynamic motion in frog sexual displays.
    Halfwerk W; Dixon MM; Ottens KJ; Taylor RC; Ryan MJ; Page RA; Jones PL
    J Exp Biol; 2014 Sep; 217(Pt 17):3038-44. PubMed ID: 25165134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast sensory-motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept.
    Geberl C; Brinkløv S; Wiegrebe L; Surlykke A
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4122-7. PubMed ID: 25775538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic mirror effect increases prey detection distance in trawling bats.
    Siemers BM; Baur E; Schnitzler HU
    Naturwissenschaften; 2005 Jun; 92(6):272-6. PubMed ID: 15871000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach.
    Ratcliffe JM; Fullard JH
    J Exp Biol; 2005 Dec; 208(Pt 24):4689-98. PubMed ID: 16326950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Who's for dinner? High-throughput sequencing reveals bat dietary differentiation in a biodiversity hotspot where prey taxonomy is largely undescribed.
    Burgar JM; Murray DC; Craig MD; Haile J; Houston J; Stokes V; Bunce M
    Mol Ecol; 2014 Aug; 23(15):3605-17. PubMed ID: 24118181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reliable detection of predator cues in afferent spike trains of a katydid under high background noise levels.
    Hartbauer M; Radspieler G; Römer H
    J Exp Biol; 2010 Sep; 213(Pt 17):3036-46. PubMed ID: 20709932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prey Exploits the Auditory Illusions of Eavesdropping Predators.
    Legett HD; Hemingway CT; Bernal XE
    Am Nat; 2020 May; 195(5):927-933. PubMed ID: 32364791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. All you can eat: high performance capacity and plasticity in the common big-eared bat, Micronycteris microtis (Chiroptera: Phyllostomidae).
    Santana SE; Geipel I; Dumont ER; Kalka MB; Kalko EK
    PLoS One; 2011; 6(12):e28584. PubMed ID: 22164308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost-benefit ratio of interactions.
    Lewanzik D; Sundaramurthy AK; Goerlitz HR
    J Anim Ecol; 2019 Oct; 88(10):1462-1473. PubMed ID: 30945281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.