These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 25994701)

  • 1. Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 May; 137(5):2698-725. PubMed ID: 25994701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustical transmission-line model of the middle-ear cavities and mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 Apr; 137(4):1877-87. PubMed ID: 25920840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL; Guan X; Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2018 Sep; 367():17-31. PubMed ID: 30015103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network model for the human middle ear.
    Kringlebotn M
    Scand Audiol; 1988; 17(2):75-85. PubMed ID: 3187377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
    Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2013 Jul; 301():105-14. PubMed ID: 23159918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of middle ear components on eardrum quasi-static deformation.
    Dirckx JJ; Decraemer WF
    Hear Res; 2001 Jul; 157(1-2):124-37. PubMed ID: 11470192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave model of the cat tympanic membrane.
    Parent P; Allen JB
    J Acoust Soc Am; 2007 Aug; 122(2):918-31. PubMed ID: 17672641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Middle ear forward and reverse transmission in gerbil.
    Dong W; Olson ES
    J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional finite element modeling of human ear for sound transmission.
    Gan RZ; Feng B; Sun Q
    Ann Biomed Eng; 2004 Jun; 32(6):847-59. PubMed ID: 15255215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method to estimate sound energy entering the middle ear.
    Chen S; Deng J; Bian L; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():29-32. PubMed ID: 24109616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inner-ear sound pressures near the base of the cochlea in chinchilla: further investigation.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2013 Apr; 133(4):2208-23. PubMed ID: 23556590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions.
    Puria S
    J Acoust Soc Am; 2003 May; 113(5):2773-89. PubMed ID: 12765395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears: a dynamic model study of the chicken middle ear.
    Muyshondt PGG; Dirckx JJJ
    Biomech Model Mechanobiol; 2020 Feb; 19(1):233-249. PubMed ID: 31372910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Tympanic Membrane Electrodes on Sound Transmission From the Ear Canal to the Middle and Inner Ears.
    Hannon C; Lewis JD
    Ear Hear; 2024 Nov-Dec 01; 45(6):1396-1405. PubMed ID: 38764148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model.
    O'Connor KN; Cai H; Puria S
    J Acoust Soc Am; 2017 Nov; 142(5):2836. PubMed ID: 29195482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic mechanisms: canal wall-up versus canal wall-down mastoidectomy.
    Whittemore KR; Merchant SN; Rosowski JJ
    Otolaryngol Head Neck Surg; 1998 Jun; 118(6):751-61. PubMed ID: 9627232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of the acoustic input impedance of the ear.
    Withnell RH; Gowdy LE
    J Assoc Res Otolaryngol; 2013 Oct; 14(5):611-22. PubMed ID: 23917695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.