BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25994998)

  • 1. Toxicity in relation to mode of action for the nematode Caenorhabditis elegans: Acute-to-chronic ratios and quantitative structure-activity relationships.
    Ristau K; Akgül Y; Bartel AS; Fremming J; Müller MT; Reiher L; Stapela F; Splett JP; Spann N
    Environ Toxicol Chem; 2015 Oct; 34(10):2347-53. PubMed ID: 25994998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of variability in acute to chronic toxicity ratios for aquatic invertebrates and fish.
    Raimondo S; Montague BJ; Barron MG
    Environ Toxicol Chem; 2007 Sep; 26(9):2019-23. PubMed ID: 17705662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is Caenorhabditis elegans representative of freshwater nematode species in toxicity testing?
    Haegerbaeumer A; Höss S; Heininger P; Traunspurger W
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2879-2888. PubMed ID: 29143265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute to chronic ratios in aquatic toxicity--variation across trophic levels and relationship with chemical structure.
    Ahlers J; Riedhammer C; Vogliano M; Ebert RU; Kühne R; Schüürmann G
    Environ Toxicol Chem; 2006 Nov; 25(11):2937-45. PubMed ID: 17089717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrepancies in the acute versus chronic toxicity of compounds with a designated narcotic mechanism.
    Dom N; Penninck M; Knapen D; Blust R
    Chemosphere; 2012 May; 87(7):742-9. PubMed ID: 22284979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish.
    Claeys L; Iaccino F; Janssen CR; Van Sprang P; Verdonck F
    Environ Toxicol Chem; 2013 Oct; 32(10):2217-25. PubMed ID: 23775559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of aquatic experimental versus predicted and extrapolated chronic toxicity data of four structural analogues.
    Dom N; Knapen D; Blust R
    Chemosphere; 2012 Jan; 86(1):56-64. PubMed ID: 21944038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of nematode communities to metals and PAHs in freshwater microcosms.
    Haegerbaeumer A; Höss S; Heininger P; Traunspurger W
    Ecotoxicol Environ Saf; 2018 Feb; 148():244-253. PubMed ID: 29065374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.
    Klüver N; Vogs C; Altenburger R; Escher BI; Scholz S
    Chemosphere; 2016 Dec; 164():164-173. PubMed ID: 27588575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-analysis of fish early life stage tests-Association of toxic ratios and acute-to-chronic ratios with modes of action.
    Scholz S; Schreiber R; Armitage J; Mayer P; Escher BI; Lidzba A; Léonard M; Altenburger R
    Environ Toxicol Chem; 2018 Apr; 37(4):955-969. PubMed ID: 29350428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of the Caenorhabditis elegans growth and reproduction test to assess the ecotoxicity of soils and complex matrices.
    Huguier P; Manier N; Méline C; Bauda P; Pandard P
    Environ Toxicol Chem; 2013 Sep; 32(9):2100-8. PubMed ID: 23703843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One uncertainty factor does not fit all: Identifying mode of action and species specific acute to chronic ratios for aquatic life.
    Wang Z; Berninger JP; You J; Brooks BW
    Environ Pollut; 2020 Jul; 262():114262. PubMed ID: 32120260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative approach using ecotoxicological methods from single-species bioassays to model ecosystems.
    Haegerbaeumer A; Höss S; Ristau K; Claus E; Möhlenkamp C; Heininger P; Traunspurger W
    Environ Toxicol Chem; 2016 Dec; 35(12):2987-2997. PubMed ID: 27155316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.
    Nendza M; Müller M; Wenzel A
    Environ Sci Process Impacts; 2017 Mar; 19(3):429-437. PubMed ID: 28165522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High-throughput Assay for the Prediction of Chemical Toxicity by Automated Phenotypic Profiling of Caenorhabditis elegans.
    Gao S; Chen W; Zhang N; Xu C; Jing H; Zhang W; Han G; Flavel M; Jois M; Zeng Y; Han JJ; Xian B; Li G
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30933063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans.
    Wang H; Wick RL; Xing B
    Environ Pollut; 2009 Apr; 157(4):1171-7. PubMed ID: 19081167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of polycyclic aromatic hydrocarbons to the nematode Caenorhabditis elegans.
    Sese BT; Grant A; Reid BJ
    J Toxicol Environ Health A; 2009; 72(19):1168-80. PubMed ID: 20077185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A re-evaluation of PETROTOX for predicting acute and chronic toxicity of petroleum substances.
    Redman AD; Parkerton TF; Leon Paumen M; Butler JD; Letinski DJ; den Haan K
    Environ Toxicol Chem; 2017 Aug; 36(8):2245-2252. PubMed ID: 28106281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism.
    Höss S; Jänsch S; Moser T; Junker T; Römbke J
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1811-8. PubMed ID: 19665791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.