These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25995139)

  • 1. Water quality monitoring of Al-Habbaniyah Lake using remote sensing and in situ measurements.
    Al-Fahdawi AA; Rabee AM; Al-Hirmizy SM
    Environ Monit Assess; 2015 Jun; 187(6):367. PubMed ID: 25995139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Monitoring the seasonal distribution pattern of chlorophyll-a concentration in Taihu Lake based on CBERS-1 imageries].
    Zhou LC; Chen J; Sun JH; Fu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb; 31(2):530-4. PubMed ID: 21510420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.
    Gao Y; Gao J; Yin H; Liu C; Xia T; Wang J; Huang Q
    J Environ Manage; 2015 Mar; 151():33-43. PubMed ID: 25528271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of Geographic Information System (GIS) analysis of Lake Uluabat.
    Hacısalihoğlu S; Karaer F; Katip A
    Environ Monit Assess; 2016 Jun; 188(6):331. PubMed ID: 27154052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water quality changes in Chini Lake, Pahang, West Malaysia.
    Shuhaimi-Othman M; Lim EC; Mushrifah I
    Environ Monit Assess; 2007 Aug; 131(1-3):279-92. PubMed ID: 17171269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water quality monitoring and assessment of an urban Mediterranean lake facilitated by remote sensing applications.
    Markogianni V; Dimitriou E; Karaouzas I
    Environ Monit Assess; 2014 Aug; 186(8):5009-26. PubMed ID: 24705815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysing the correlations of long-term seasonal water quality parameters, suspended solids and total dissolved solids in a shallow reservoir with meteorological factors.
    Zhang C; Zhang W; Huang Y; Gao X
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6746-6756. PubMed ID: 28091992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes.
    Vos RJ; Hakvoort JH; Jordans RW; Ibelings BW
    Sci Total Environ; 2003 Aug; 312(1-3):221-43. PubMed ID: 12873412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid field estimation of biochemical oxygen demand in a subtropical eutrophic urban lake with chlorophyll a fluorescence.
    Xu Z; Xu YJ
    Environ Monit Assess; 2015 Jan; 187(1):4171. PubMed ID: 25446719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations.
    Cheng C; Wei Y; Lv G; Xu N
    Environ Monit Assess; 2019 Jan; 191(2):84. PubMed ID: 30659368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal dynamics and drivers of ecosystem metabolism in a large subtropical shallow lake (lake Taihu).
    Hu Z; Xiao Q; Yang J; Xiao W; Wang W; Liu S; Lee X
    Int J Environ Res Public Health; 2015 Apr; 12(4):3691-706. PubMed ID: 25837347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring.
    Boucher J; Weathers KC; Norouzi H; Steele B
    Ecol Appl; 2018 Jun; 28(4):1044-1054. PubMed ID: 29847690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing remotely sensed chlorophyll-a for the implementation of the Water Framework Directive in European perialpine lakes.
    Bresciani M; Stroppiana D; Odermatt D; Morabito G; Giardino C
    Sci Total Environ; 2011 Aug; 409(17):3083-91. PubMed ID: 21632091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal variability of lake surface water temperature and water quality parameters and its interrelationship with water hyacinth biomass in Lake Tana, Ethiopia.
    Bayable G; Cai J; Mekonnen M; Legesse SA; Ishikawa K; Sato S; Kuwahara VS
    Environ Sci Pollut Res Int; 2024 Jul; 31(33):45929-45953. PubMed ID: 38980490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements.
    Wang M; Nim CJ; Son S; Shi W
    Water Res; 2012 Oct; 46(16):5410-22. PubMed ID: 22858282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of remote sensing for the optimization of in-situ sampling for monitoring of phytoplankton abundance in a large lake.
    Kiefer I; Odermatt D; Anneville O; Wüest A; Bouffard D
    Sci Total Environ; 2015 Sep; 527-528():493-506. PubMed ID: 26002424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile.
    Huovinen P; Ramírez J; Caputo L; Gómez I
    Sci Total Environ; 2019 Aug; 679():196-208. PubMed ID: 31082593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semi-operative approach to lake water quality retrieval from remote sensing data.
    Pulliainen J; Kallio K; Eloheimo K; Koponen S; Servomaa H; Hannonen T; Tauriainen S; Hallikainen M
    Sci Total Environ; 2001 Mar; 268(1-3):79-93. PubMed ID: 11315748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The feasibility of monitoring wilderness lake chemistry with remote sensing methods.
    Vertucci FA
    Environ Monit Assess; 1989 Apr; 12(1):59. PubMed ID: 24249059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Quantitative remote sensing retrieval for algae in inland waters].
    Song Y; Song XD; Jiang H; Guo ZB; Guo QH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):1075-9. PubMed ID: 20545165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.