BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25995627)

  • 1. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2.
    Zhao Z; Xie M; Li Y; Chen A; Li G; Zhang J; Hu H; Wang X; Li S
    Int J Nanomedicine; 2015; 10():3171-81. PubMed ID: 25995627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin's bioaccessibility.
    Ubeyitogullari A; Ciftci ON
    Sci Rep; 2019 Dec; 9(1):19112. PubMed ID: 31836788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process.
    Anwar M; Ahmad I; Warsi MH; Mohapatra S; Ahmad N; Akhter S; Ali A; Ahmad FJ
    Eur J Pharm Biopharm; 2015 Oct; 96():162-72. PubMed ID: 26241925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of zein nanoparticles by using solution-enhanced dispersion with supercritical CO
    Li S; Zhao Y
    Int J Nanomedicine; 2017; 12():3485-3494. PubMed ID: 28496324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process.
    Sui X; Wei W; Yang L; Zu Y; Zhao C; Zhang L; Yang F; Zhang Z
    Int J Pharm; 2012 Feb; 423(2):471-9. PubMed ID: 22183131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micronized curcumin fabricated by supercritical CO
    Xue B; Huang J; Zhang H; Li B; Xu M; Zhang Y; Xie M; Li X
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):1135-1143. PubMed ID: 32896157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Curcuma Longa L. Extract Nanoparticles Using Supercritical Solution Expansion.
    Momenkiaei F; Raofie F
    J Pharm Sci; 2019 Apr; 108(4):1581-1589. PubMed ID: 30439462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preparation of curcumin-EC sustained-release composite particles by supercritical CO2 anti-solvent technology].
    Bai WL; Yan TY; Wang ZX; Huang DC; Yan TX; Li P
    Zhongguo Zhong Yao Za Zhi; 2015 Jan; 40(2):226-30. PubMed ID: 26080549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique.
    Zu Y; Wu W; Zhao X; Li Y; Wang W; Zhong C; Zhang Y; Zhao X
    Int J Pharm; 2014 Aug; 471(1-2):366-76. PubMed ID: 24882039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation.
    Zhao X; Wang W; Zu Y; Zhang Y; Li Y; Sun W; Shan C; Ge Y
    Drug Deliv; 2014 Sep; 21(6):467-79. PubMed ID: 24479653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Fine Particles from Curcumin/PVP by the Supercritical Antisolvent Process with a Coaxial Nozzle.
    Machmudah S; Winardi S; Wahyudiono ; Kanda H; Goto M
    ACS Omega; 2020 Mar; 5(12):6705-6714. PubMed ID: 32258906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical CO
    Sadeghi F; Kamali H; Kouhestanian S; Hadizadeh F; Nokhodchi A; Afrasiabi Garekani H
    Pharm Dev Technol; 2022 Dec; 27(10):999-1008. PubMed ID: 36322612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.
    Kim MS; Jin SJ; Kim JS; Park HJ; Song HS; Neubert RH; Hwang SJ
    Eur J Pharm Biopharm; 2008 Jun; 69(2):454-65. PubMed ID: 18359211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and physicochemical properties of vinblastine microparticles by supercritical antisolvent process.
    Zhang X; Zhao X; Zu Y; Chen X; Lu Q; Ma Y; Yang L
    Int J Mol Sci; 2012 Oct; 13(10):12598-607. PubMed ID: 23202916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method.
    Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ
    Food Funct; 2018 Mar; 9(3):1829-1839. PubMed ID: 29517797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization.
    Chow SF; Wan KY; Cheng KK; Wong KW; Sun CC; Baum L; Chow AH
    Eur J Pharm Biopharm; 2015 Aug; 94():436-49. PubMed ID: 26143368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curcumin-Silk Fibroin Nanoparticles for Enhanced Anti-
    Xue B; Zhang Y; Xu M; Wang C; Huang J; Zhang H; Meng S; Xie M; Tao A; Li X
    J Biomed Nanotechnol; 2019 Apr; 15(4):769-778. PubMed ID: 30841969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Vitexin Nanoparticles by Combining the Antisolvent Precipitation and High Pressure Homogenization Approaches Followed by Lyophilization for Dissolution Rate Enhancement.
    Gu C; Liu Z; Yuan X; Li W; Zu Y; Fu Y
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29165376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process.
    Ha ES; Kim JS; Baek IH; Yoo JW; Jung Y; Moon HR; Kim MS
    Drug Des Devel Ther; 2015; 9():4269-77. PubMed ID: 26345723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.