BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25996137)

  • 41. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex.
    De Pietri Tonelli D; Pulvers JN; Haffner C; Murchison EP; Hannon GJ; Huttner WB
    Development; 2008 Dec; 135(23):3911-21. PubMed ID: 18997113
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potency and fate specification in CNS stem cell populations in vitro.
    Ravin R; Hoeppner DJ; Munno DM; Carmel L; Sullivan J; Levitt DL; Miller JL; Athaide C; Panchision DM; McKay RD
    Cell Stem Cell; 2008 Dec; 3(6):670-80. PubMed ID: 19041783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors.
    Imayoshi I; Isomura A; Harima Y; Kawaguchi K; Kori H; Miyachi H; Fujiwara T; Ishidate F; Kageyama R
    Science; 2013 Dec; 342(6163):1203-8. PubMed ID: 24179156
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Basic helix-loop-helix factors in cortical development.
    Ross SE; Greenberg ME; Stiles CD
    Neuron; 2003 Jul; 39(1):13-25. PubMed ID: 12848929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stereotypical physiological properties emerge during early neuronal and glial lineage development in the embryonic rat neocortex.
    Maric D; Maric I; Chang YH; Barker JL
    Cereb Cortex; 2000 Aug; 10(8):729-47. PubMed ID: 10920046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Xrx1 controls proliferation and multipotency of retinal progenitors.
    Casarosa S; Amato MA; Andreazzoli M; Gestri G; Barsacchi G; Cremisi F
    Mol Cell Neurosci; 2003 Jan; 22(1):25-36. PubMed ID: 12595236
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Suppressor of Fused Is Critical for Maintenance of Neuronal Progenitor Identity during Corticogenesis.
    Yabut OR; Fernandez G; Huynh T; Yoon K; Pleasure SJ
    Cell Rep; 2015 Sep; 12(12):2021-34. PubMed ID: 26387942
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons.
    Sugitani Y; Nakai S; Minowa O; Nishi M; Jishage K; Kawano H; Mori K; Ogawa M; Noda T
    Genes Dev; 2002 Jul; 16(14):1760-5. PubMed ID: 12130536
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development.
    Teissier A; Griveau A; Vigier L; Piolot T; Borello U; Pierani A
    J Neurosci; 2010 Aug; 30(31):10563-74. PubMed ID: 20685999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways.
    Schuurmans C; Armant O; Nieto M; Stenman JM; Britz O; Klenin N; Brown C; Langevin LM; Seibt J; Tang H; Cunningham JM; Dyck R; Walsh C; Campbell K; Polleux F; Guillemot F
    EMBO J; 2004 Jul; 23(14):2892-902. PubMed ID: 15229646
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease.
    Li R; Sun L; Fang A; Li P; Wu Q; Wang X
    Protein Cell; 2017 Nov; 8(11):823-833. PubMed ID: 29058117
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scratch2 modulates neurogenesis and cell migration through antagonism of bHLH proteins in the developing neocortex.
    Paul V; Tonchev AB; Henningfeld KA; Pavlakis E; Rust B; Pieler T; Stoykova A
    Cereb Cortex; 2014 Mar; 24(3):754-72. PubMed ID: 23180754
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification.
    Zhou Q; Anderson DJ
    Cell; 2002 Apr; 109(1):61-73. PubMed ID: 11955447
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Radial glia serve as neuronal progenitors in all regions of the central nervous system.
    Anthony TE; Klein C; Fishell G; Heintz N
    Neuron; 2004 Mar; 41(6):881-90. PubMed ID: 15046721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural precursor differentiation following transplantation into neocortex is dependent on intrinsic developmental state and receptor competence.
    Sheen VL; Arnold MW; Wang Y; Macklis JD
    Exp Neurol; 1999 Jul; 158(1):47-62. PubMed ID: 10448417
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glial fibrillary acidic protein-expressing neural progenitors give rise to immature neurons via early intermediate progenitors expressing both glial fibrillary acidic protein and neuronal markers in the adult hippocampus.
    Liu Y; Namba T; Liu J; Suzuki R; Shioda S; Seki T
    Neuroscience; 2010 Mar; 166(1):241-51. PubMed ID: 20026190
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential of progenitors from postnatal cerebellar neuroepithelium and white matter: lineage specified vs. multipotent fate.
    Milosevic A; Goldman JE
    Mol Cell Neurosci; 2004 Jun; 26(2):342-53. PubMed ID: 15207858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Progenitor networking in the fetal primate neocortex.
    Huttner WB; Kelava I; Lewitus E
    Neuron; 2013 Oct; 80(2):259-62. PubMed ID: 24139029
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human-specific
    Kalebic N; Gilardi C; Albert M; Namba T; Long KR; Kostic M; Langen B; Huttner WB
    Elife; 2018 Nov; 7():. PubMed ID: 30484771
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Satb2
    Ambrozkiewicz MC; Bessa P; Salazar-Lázaro A; Salina V; Tarabykin V
    J Neurosci Methods; 2017 Nov; 291():113-121. PubMed ID: 28782628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.