BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25996308)

  • 1. Clean WS2 and MoS2 Nanoribbons Generated by Laser-Induced Unzipping of the Nanotubes.
    Vasu K; Yamijala SS; Zak A; Gopalakrishnan K; Pati SK; Rao CN
    Small; 2015 Aug; 11(32):3916-20. PubMed ID: 25996308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clean nanotube unzipping by abrupt thermal expansion of molecular nitrogen: graphene nanoribbons with atomically smooth edges.
    Morelos-Gómez A; Vega-Díaz SM; González VJ; Tristán-López F; Cruz-Silva R; Fujisawa K; Muramatsu H; Hayashi T; Mi X; Shi Y; Sakamoto H; Khoerunnisa F; Kaneko K; Sumpter BG; Kim YA; Meunier V; Endo M; Muñoz-Sandoval E; Terrones M
    ACS Nano; 2012 Mar; 6(3):2261-72. PubMed ID: 22360783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.
    Wang Z; Li H; Liu Z; Shi Z; Lu J; Suenaga K; Joung SK; Okazaki T; Gu Z; Zhou J; Gao Z; Li G; Sanvito S; Wang E; Iijima S
    J Am Chem Soc; 2010 Oct; 132(39):13840-7. PubMed ID: 20828123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical unzipping of WS2 nanotubes.
    Nethravathi C; Jeffery AA; Rajamathi M; Kawamoto N; Tenne R; Golberg D; Bando Y
    ACS Nano; 2013 Aug; 7(8):7311-7. PubMed ID: 23883418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons.
    Zhang Z; Xie Y; Peng Q; Chen Y
    Sci Rep; 2016 Feb; 6():21639. PubMed ID: 26884123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-directed synthesis of MoS
    Chowdhury T; Kim J; Sadler EC; Li C; Lee SW; Jo K; Xu W; Gracias DH; Drichko NV; Jariwala D; Brintlinger TH; Mueller T; Park HG; Kempa TJ
    Nat Nanotechnol; 2020 Jan; 15(1):29-34. PubMed ID: 31740793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of high Curie temperature ferromagnetism in atomically thin MoS2 and WS2 nanosheets with uniform and flower-like morphology.
    Yang Z; Gao D; Zhang J; Xu Q; Shi S; Tao K; Xue D
    Nanoscale; 2015 Jan; 7(2):650-8. PubMed ID: 25427772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferromagnetism of 1T'-MoS
    Chen K; Deng J; Ding X; Sun J; Yang S; Liu JZ
    J Am Chem Soc; 2018 Nov; 140(47):16206-16212. PubMed ID: 30411616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition-metal-catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature.
    Wang J; Ma L; Yuan Q; Zhu L; Ding F
    Angew Chem Int Ed Engl; 2011 Aug; 50(35):8041-5. PubMed ID: 21761515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons.
    Kumar P; Panchakarla LS; Rao CN
    Nanoscale; 2011 May; 3(5):2127-9. PubMed ID: 21445381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarity-reversed robust carrier mobility in monolayer MoS₂ nanoribbons.
    Cai Y; Zhang G; Zhang YW
    J Am Chem Soc; 2014 Apr; 136(17):6269-75. PubMed ID: 24712770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clean unzipping by steam etching to synthesize graphene nanoribbons.
    Zhuang N; Liu C; Jia L; Wei L; Cai J; Guo Y; Zhang Y; Hu X; Chen J; Chen X; Tang Y
    Nanotechnology; 2013 Aug; 24(32):325604. PubMed ID: 23867357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helical and Dendritic Unzipping of Carbon Nanotubes: A Route to Nitrogen-Doped Graphene Nanoribbons.
    Zehtab Yazdi A; Chizari K; Jalilov AS; Tour J; Sundararaj U
    ACS Nano; 2015 Jun; 9(6):5833-45. PubMed ID: 26028162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.
    Lu P; Wu X; Guo W; Zeng XC
    Phys Chem Chem Phys; 2012 Oct; 14(37):13035-40. PubMed ID: 22911017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the Mechanism of Oxidative Unzipping of Multiwall Carbon Nanotubes to Graphene Nanoribbons.
    Dimiev AM; Khannanov A; Vakhitov I; Kiiamov A; Shukhina K; Tour JM
    ACS Nano; 2018 Apr; 12(4):3985-3993. PubMed ID: 29578700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unravelling the Role of Topological Defects on Catalytic Unzipping of Single-Walled Carbon Nanotubes by Single Transition Metal Atom.
    Ma L; Zeng XC
    J Phys Chem Lett; 2018 Dec; 9(23):6801-6807. PubMed ID: 30423244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of graphene nanoribbons with a defined mixed edge-site sequence by surface assisted polymerization of (1,6)-dibromopyrene on Ag(110).
    Smerieri M; Píš I; Ferrighi L; Nappini S; Lusuan A; Di Valentin C; Vaghi L; Papagni A; Cattelan M; Agnoli S; Magnano E; Bondino F; Savio L
    Nanoscale; 2016 Oct; 8(41):17843-17853. PubMed ID: 27714142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unzipping carbon nanotubes into nanoribbons upon oxidation: a first-principles study.
    Li F; Kan E; Lu R; Xiao C; Deng K; Su H
    Nanoscale; 2012 Feb; 4(4):1254-7. PubMed ID: 22252198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.