BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 25996610)

  • 1. Phase-transition properties of glycerol-dipalmitate lipid bilayers investigated using molecular dynamics simulation.
    Laner M; Hünenberger PH
    J Mol Graph Model; 2015 Jun; 59():136-47. PubMed ID: 25996610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-timescale motions in glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulation.
    Laner M; Horta BA; Hünenberger PH
    J Mol Graph Model; 2015 Feb; 55():48-64. PubMed ID: 25437095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of methanol on the phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations: in quest of the biphasic effect.
    Laner M; Hünenberger PH
    J Mol Graph Model; 2015 Feb; 55():85-104. PubMed ID: 25437096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the cosolutes trehalose and methanol on the equilibrium and phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations.
    Laner M; Horta BA; Hünenberger PH
    Eur Biophys J; 2014 Nov; 43(10-11):517-44. PubMed ID: 25150983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of gel and liquid-crystalline structures of fully hydrated POPC and POPE bilayers.
    Leekumjorn S; Sum AK
    J Phys Chem B; 2007 May; 111(21):6026-33. PubMed ID: 17488110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating the Transition between Gel and Liquid-Crystal Phases of Lipid Bilayers: Dependence of the Transition Temperature on the Hydration Level.
    Horta BA; de Vries AH; Hünenberger PH
    J Chem Theory Comput; 2010 Aug; 6(8):2488-500. PubMed ID: 26613501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface.
    Mansour HM; Zografi G
    Langmuir; 2007 Mar; 23(7):3809-19. PubMed ID: 17323986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding thermal phases in atomic detail by all-atom molecular-dynamics simulation of a phospholipid bilayer.
    Ogata K; Uchida W; Nakamura S
    J Phys Chem B; 2014 Dec; 118(49):14353-65. PubMed ID: 25383505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High pressure effect on phase transition behavior of lipid bilayers.
    Lai K; Wang B; Zhang Y; Zhang Y
    Phys Chem Chem Phys; 2012 Apr; 14(16):5744-52. PubMed ID: 22418786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force field dependence of phospholipid headgroup and acyl chain properties: comparative molecular dynamics simulations of DMPC bilayers.
    Prakash P; Sankararamakrishnan R
    J Comput Chem; 2010 Jan; 31(2):266-77. PubMed ID: 19475632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of phase transition temperatures for atomistic models of lipids from temperature-dependent stripe domain growth kinetics.
    Coppock PS; Kindt JT
    J Phys Chem B; 2010 Sep; 114(35):11468-73. PubMed ID: 20690693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of phospholipid bilayers.
    Huang P; Perez JJ; Loew GH
    J Biomol Struct Dyn; 1994 Apr; 11(5):927-56. PubMed ID: 7946065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of a hydrated phospholipid bilayer.
    Essex JW; Hann MM; Richards WG
    Philos Trans R Soc Lond B Biol Sci; 1994 May; 344(1309):239-60. PubMed ID: 7938199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the phase behavior of coarse-grained model lipid bilayers through computational calorimetry.
    Rodgers JM; Sørensen J; de Meyer FJ; Schiøtt B; Smit B
    J Phys Chem B; 2012 Feb; 116(5):1551-69. PubMed ID: 22276963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction.
    Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN
    Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.
    Posokhov YO; Kyrychenko A
    Comput Biol Chem; 2013 Oct; 46():23-31. PubMed ID: 23764528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations.
    Pan J; Cheng X; Sharp M; Ho CS; Khadka N; Katsaras J
    Soft Matter; 2015 Jan; 11(1):130-8. PubMed ID: 25369786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase transition of a DPPC bilayer induced by an external surface pressure: from bilayer to monolayer behavior. a molecular dynamics simulation study.
    López Cascales JJ; Otero TF; Fernandez Romero AJ; Camacho L
    Langmuir; 2006 Jun; 22(13):5818-24. PubMed ID: 16768513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins.
    Venturoli M; Smit B; Sperotto MM
    Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.