These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 25996718)

  • 1. Evaluation of Fall Recovery and Gait Adaptation to Medial and Lateral Gait Perturbations.
    Peterson MJ; Jongprasithporn M; Carey SL
    Biomed Sci Instrum; 2015; 51():198-205. PubMed ID: 25996718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What causes a crossover step when walking on uneven ground? A study in healthy young women.
    Thies SB; Ashton-Miller JA; Richardson JK
    Gait Posture; 2007 Jun; 26(1):156-60. PubMed ID: 17045479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery from perturbations during paced walking.
    Oddsson LI; Wall C; McPartland MD; Krebs DE; Tucker CA
    Gait Posture; 2004 Feb; 19(1):24-34. PubMed ID: 14741301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Treadmill Speed and Perturbation Intensity on Selection of Balancing Strategies during Slow Walking Perturbed in the Frontal Plane.
    Matjačić Z; Zadravec M; Olenšek A
    Appl Bionics Biomech; 2019; 2019():1046459. PubMed ID: 31281413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of unexpected mechanical perturbations during treadmill walking on spatiotemporal gait parameters, and the dynamic stability measures by which to quantify postural response.
    Madehkhaksar F; Klenk J; Sczuka K; Gordt K; Melzer I; Schwenk M
    PLoS One; 2018; 13(4):e0195902. PubMed ID: 29672558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    Gait Posture; 2012 Jun; 36(2):260-4. PubMed ID: 22464635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trip recovery strategies following perturbations of variable duration.
    Shirota C; Simon AM; Kuiken TA
    J Biomech; 2014 Aug; 47(11):2679-84. PubMed ID: 24894024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking while resisting a perturbation: Effects on ankle dorsiflexor activation during swing and potential for rehabilitation.
    Blanchette A; Lambert S; Richards CL; Bouyer LJ
    Gait Posture; 2011 Jul; 34(3):358-63. PubMed ID: 21733695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC; Bach TM; Pereira DM
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of age on the ability to recover from a single unexpected underfoot perturbation during gait: kinematic responses.
    Kim H; Nnodim JO; Richardson JK; Ashton-Miller JA
    Gait Posture; 2013 Sep; 38(4):853-7. PubMed ID: 23680425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepping strategies for regulating gait adaptability and stability.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    J Biomech; 2013 Mar; 46(5):905-11. PubMed ID: 23332822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-dependent corrective reactions for backward balance losses during human walking.
    Kagawa T; Ohta Y; Uno Y
    Hum Mov Sci; 2011 Dec; 30(6):1210-24. PubMed ID: 21704417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans.
    Ogawa T; Kawashima N; Ogata T; Nakazawa K
    J Neurophysiol; 2014 Feb; 111(4):722-32. PubMed ID: 24225544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking in an unstable environment: strategies used by transtibial amputees to prevent falling during gait.
    Hak L; van Dieën JH; van der Wurff P; Prins MR; Mert A; Beek PJ; Houdijk H
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2186-93. PubMed ID: 23916618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging Affects Lower Limb Joint Moments and Muscle Responses to a Split-Belt Treadmill Perturbation.
    Yoo D; An J; Seo KH; Lee BC
    Front Sports Act Living; 2021; 3():683039. PubMed ID: 34350396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.