BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25996907)

  • 1. A colourful clock.
    van Diepen HC; Foster RG; Meijer JH
    PLoS Biol; 2015 May; 13(5):e1002160. PubMed ID: 25996907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) Are Necessary for Light Entrainment of Peripheral Clocks.
    Kofuji P; Mure LS; Massman LJ; Purrier N; Panda S; Engeland WC
    PLoS One; 2016; 11(12):e0168651. PubMed ID: 27992553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phototransduction by retinal ganglion cells that set the circadian clock.
    Berson DM; Dunn FA; Takao M
    Science; 2002 Feb; 295(5557):1070-3. PubMed ID: 11834835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body's circadian clock network with external time.
    Husse J; Eichele G; Oster H
    Bioessays; 2015 Oct; 37(10):1119-28. PubMed ID: 26252253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic advances in ophthalmology: the role of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells in the circadian organization of the visual system.
    Ramsey DJ; Ramsey KM; Vavvas DG
    Semin Ophthalmol; 2013; 28(5-6):406-21. PubMed ID: 24010846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasopressin casts light on the suprachiasmatic nucleus.
    Tsuji T; Allchorne AJ; Zhang M; Tsuji C; Tobin VA; Pineda R; Raftogianni A; Stern JE; Grinevich V; Leng G; Ludwig M
    J Physiol; 2017 Jun; 595(11):3497-3514. PubMed ID: 28402052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photic regulation of clock systems.
    Hughes S; Jagannath A; Hankins MW; Foster RG; Peirson SN
    Methods Enzymol; 2015; 552():125-43. PubMed ID: 25707275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulations in irradiance directed at melanopsin, but not cone photoreceptors, reliably alter electrophysiological activity in the suprachiasmatic nucleus and circadian behaviour in mice.
    Mouland JW; Martial FP; Lucas RJ; Brown TM
    J Pineal Res; 2021 May; 70(4):e12735. PubMed ID: 33793975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light Input to the Mammalian Circadian Clock.
    Dannerfjord AA; Brown LA; Foster RG; Peirson SN
    Methods Mol Biol; 2021; 2130():233-247. PubMed ID: 33284449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrainment range of nonidentical circadian oscillators by a light-dark cycle.
    Gu C; Xu J; Liu Z; Rohling JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022702. PubMed ID: 24032859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photic Entrainment of the Circadian System.
    Ashton A; Foster RG; Jagannath A
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC2-signaling deficient mice.
    Hughes AT; Croft CL; Samuels RE; Myung J; Takumi T; Piggins HD
    Sci Rep; 2015 Sep; 5():14044. PubMed ID: 26370467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entrainment of circadian clocks in mammals by arousal and food.
    Mistlberger RE; Antle MC
    Essays Biochem; 2011 Jun; 49(1):119-36. PubMed ID: 21819388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanisms of structural plasticity associated with photic synchronization of the circadian clock within the suprachiasmatic nucleus].
    Bosler O; Girardet C; Sage-Ciocca D; Jacomy H; François-Bellan AM; Becquet D
    J Soc Biol; 2009; 203(1):49-63. PubMed ID: 19358811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting.
    Panda S; Sato TK; Castrucci AM; Rollag MD; DeGrip WJ; Hogenesch JB; Provencio I; Kay SA
    Science; 2002 Dec; 298(5601):2213-6. PubMed ID: 12481141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropsin (OPN5) Mediates Local Light-Dependent Induction of Circadian Clock Genes and Circadian Photoentrainment in Exposed Murine Skin.
    Buhr ED; Vemaraju S; Diaz N; Lang RA; Van Gelder RN
    Curr Biol; 2019 Oct; 29(20):3478-3487.e4. PubMed ID: 31607531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light.
    Pilorz V; Tam SK; Hughes S; Pothecary CA; Jagannath A; Hankins MW; Bannerman DM; Lightman SL; Vyazovskiy VV; Nolan PM; Foster RG; Peirson SN
    PLoS Biol; 2016 Jun; 14(6):e1002482. PubMed ID: 27276063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Jetlag Resetting of Behavioral, Physiological, and Molecular Rhythms in Proestrous Female Mice.
    Pilorz V; Kolms B; Oster H
    J Biol Rhythms; 2020 Dec; 35(6):612-627. PubMed ID: 33140660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.