These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25996921)

  • 1. The filament sensor for near real-time detection of cytoskeletal fiber structures.
    Eltzner B; Wollnik C; Gottschlich C; Huckemann S; Rehfeldt F
    PLoS One; 2015; 10(5):e0126346. PubMed ID: 25996921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of Individual Filaments from 2D Confocal Microscopy Images of Flat Cells.
    Basu S; Chi Liu ; Rohde GK
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):632-43. PubMed ID: 26357274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robust Actin Filaments Image Analysis Framework.
    Alioscha-Perez M; Benadiba C; Goossens K; Kasas S; Dietler G; Willaert R; Sahli H
    PLoS Comput Biol; 2016 Aug; 12(8):e1005063. PubMed ID: 27551746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localizing and extracting filament distributions from microscopy images.
    Basu S; Liu C; Rohde GK
    J Microsc; 2015 Apr; 258(1):13-23. PubMed ID: 25556529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoskeletal changes of mesenchymal stem cells during differentiation.
    Yourek G; Hussain MA; Mao JJ
    ASAIO J; 2007; 53(2):219-28. PubMed ID: 17413564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localizing and extracting filament distributions from microscopy images.
    Basu S; Dahl KN; Rohde GK
    J Microsc; 2013 Apr; 250(1):57-67. PubMed ID: 23458491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels.
    Kartasalo K; Pölönen RP; Ojala M; Rasku J; Lekkala J; Aalto-Setälä K; Kallio P
    BMC Bioinformatics; 2015 Oct; 16():344. PubMed ID: 26503371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method.
    Uttenweiler D; Veigel C; Steubing R; Götz C; Mann S; Haussecker H; Jähne B; Fink RH
    Biophys J; 2000 May; 78(5):2709-15. PubMed ID: 10777767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of an algorithm to quantify changes in actin cytoskeletal organization.
    Vindin H; Bischof L; Gunning P; Stehn J
    J Biomol Screen; 2014 Mar; 19(3):354-68. PubMed ID: 24019255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of cytoskeletal organization by digital fluorescent microscopy.
    Lichtenstein N; Geiger B; Kam Z
    Cytometry A; 2003 Jul; 54(1):8-18. PubMed ID: 12820116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determination by electron microscopy of the actin filament end structure.
    Narita A; Maéda Y
    J Mol Biol; 2007 Jan; 365(2):480-501. PubMed ID: 17059832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FilamentSensor 2.0: An open-source modular toolbox for 2D/3D cytoskeletal filament tracking.
    Hauke L; Primeßnig A; Eltzner B; Radwitz J; Huckemann SF; Rehfeldt F
    PLoS One; 2023; 18(2):e0279336. PubMed ID: 36745610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres.
    Plotnikov SV; Millard AC; Campagnola PJ; Mohler WA
    Biophys J; 2006 Jan; 90(2):693-703. PubMed ID: 16258040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tropomyosin - master regulator of actin filament function in the cytoskeleton.
    Gunning PW; Hardeman EC; Lappalainen P; Mulvihill DP
    J Cell Sci; 2015 Aug; 128(16):2965-74. PubMed ID: 26240174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative image analysis of cytokeratin filament distribution during fetal rat liver development.
    Vassy J; Beil M; Irinopoulou T; Rigaut JP
    Hepatology; 1996 Mar; 23(3):630-8. PubMed ID: 8617446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging.
    Corydon TJ; Kopp S; Wehland M; Braun M; Schütte A; Mayer T; Hülsing T; Oltmann H; Schmitz B; Hemmersbach R; Grimm D
    Sci Rep; 2016 Jan; 6():20043. PubMed ID: 26818711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach to improve the resolution of helical filaments with a large axial rise and flexible subunits.
    Yang S; Woodhead JL; Zhao FQ; Sulbarán G; Craig R
    J Struct Biol; 2016 Jan; 193(1):45-54. PubMed ID: 26592473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QUANTIFYING ACTIN FILAMENTS IN MICROSCOPIC IMAGES USING KEYPOINT DETECTION TECHNIQUES AND A FAST MARCHING ALGORITHM.
    Liu Y; Nedo A; Seward K; Caplan J; Kambhamettu C
    Proc Int Conf Image Proc; 2020 Oct; 2020():2506-2510. PubMed ID: 33758579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying morphological features of actin cytoskeletal filaments in plant cells based on mathematical morphology.
    Kimori Y; Hikino K; Nishimura M; Mano S
    J Theor Biol; 2016 Jan; 389():123-31. PubMed ID: 26551157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of myosin filament orientations in electron micrographs of muscle cross sections.
    Yoon CH; Bödvarsson B; Klim S; Mørkebjerg M; Mortensen S; Chen J; Maclaren JR; Luther PK; Squire JM; Bones PJ; Millane RP
    IEEE Trans Image Process; 2009 Apr; 18(4):831-9. PubMed ID: 19278921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.