BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25997008)

  • 1. New energy crop giant cane (Arundo donax L.) can substitute traditional energy crops increasing biogas yield and reducing costs.
    Luca C; Pilu R; Tambone F; Scaglia B; Adani F
    Bioresour Technol; 2015 Sep; 191():197-204. PubMed ID: 25997008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant cane (Arundo donax L.) can substitute traditional energy crops in producing energy by anaerobic digestion, reducing surface area and costs: A full-scale approach.
    Corno L; Lonati S; Riva C; Pilu R; Adani F
    Bioresour Technol; 2016 Oct; 218():826-32. PubMed ID: 27428299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suitability of giant reed (Arundo donax L.) for anaerobic digestion: effect of harvest time and frequency on the biomethane yield potential.
    Ragaglini G; Dragoni F; Simone M; Bonari E
    Bioresour Technol; 2014; 152():107-15. PubMed ID: 24287451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arundo donax L.: a non-food crop for bioenergy and bio-compound production.
    Corno L; Pilu R; Adani F
    Biotechnol Adv; 2014 Dec; 32(8):1535-49. PubMed ID: 25457226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arundo donax L. can substitute traditional energy crops for more efficient, environmentally-friendly production of biogas: A Life Cycle Assessment approach.
    D'Imporzano G; Pilu R; Corno L; Adani F
    Bioresour Technol; 2018 Nov; 267():249-256. PubMed ID: 30025321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.
    Riva C; Schievano A; D'Imporzano G; Adani F
    Waste Manag; 2014 Aug; 34(8):1429-35. PubMed ID: 24841069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.
    Amon T; Amon B; Kryvoruchko V; Machmüller A; Hopfner-Sixt K; Bodiroza V; Hrbek R; Friedel J; Pötsch E; Wagentristl H; Schreiner M; Zollitsch W
    Bioresour Technol; 2007 Dec; 98(17):3204-12. PubMed ID: 16935493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of continuous biogas reactors operating under wet fermentation conditions to dry conditions with corn stover as substrate.
    Kakuk B; Kovács KL; Szuhaj M; Rákhely G; Bagi Z
    Anaerobe; 2017 Aug; 46():78-85. PubMed ID: 28576713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of energy crops alternative to maize for biogas production in the Greater Region.
    Mayer F; Gerin PA; Noo A; Lemaigre S; Stilmant D; Schmit T; Leclech N; Ruelle L; Gennen J; von Francken-Welz H; Foucart G; Flammang J; Weyland M; Delfosse P
    Bioresour Technol; 2014 Aug; 166():358-67. PubMed ID: 24929279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioethanol production from dedicated energy crops and residues in Arkansas, USA.
    Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G
    Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.
    Nges IA; Escobar F; Fu X; Björnsson L
    Waste Manag; 2012 Jan; 32(1):53-9. PubMed ID: 21975301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of factors influencing the biomethane yield of maize silages.
    Mayer F; Gerin PA; Noo A; Foucart G; Flammang J; Lemaigre S; Sinnaeve G; Dardenne P; Delfosse P
    Bioresour Technol; 2014 Feb; 153():260-8. PubMed ID: 24368275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.
    Bacenetti J; Negri M; Fiala M; González-García S
    Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the potential use of Cu-contaminated soils for giant reed (Arundo donax, L.) cultivation as a biomass crop.
    Coppa E; Astolfi S; Beni C; Carnevale M; Colarossi D; Gallucci F; Santangelo E
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8662-8672. PubMed ID: 31907812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of novel plants for biogas production in northern conditions.
    Seppälä M; Laine A; Rintala J
    Bioresour Technol; 2013 Jul; 139():355-62. PubMed ID: 23669072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential for biomethane from grass and slurry to satisfy renewable energy targets.
    Wall DM; O'Kiely P; Murphy JD
    Bioresour Technol; 2013 Dec; 149():425-31. PubMed ID: 24135566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass flow and energy balance plus economic analysis of a full-scale biogas plant in the rice-wine-pig system.
    Li J; Kong C; Duan Q; Luo T; Mei Z; Lei Y
    Bioresour Technol; 2015 Oct; 193():62-7. PubMed ID: 26117236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Considering the air quality impacts of bioenergy crop production: a case study involving Arundo donax.
    Porter WC; Barsanti KC; Baughman EC; Rosenstiel TN
    Environ Sci Technol; 2012 Sep; 46(17):9777-84. PubMed ID: 22852528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review.
    Nsanganwimana F; Marchand L; Douay F; Mench M
    Int J Phytoremediation; 2014; 16(7-12):982-1017. PubMed ID: 24933898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing an energy balance for crop-based digestion.
    Salter A; Banks CJ
    Water Sci Technol; 2009; 59(6):1053-60. PubMed ID: 19342799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.