BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 25997011)

  • 1. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae.
    He Q; Yang H; Wu L; Hu C
    Bioresour Technol; 2015 Sep; 191():219-28. PubMed ID: 25997011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sufficient utilization of natural fluctuating light intensity is an effective approach of promoting lipid productivity in oleaginous microalgal cultivation outdoors.
    He Q; Yang H; Xu L; Xia L; Hu C
    Bioresour Technol; 2015 Mar; 180():79-87. PubMed ID: 25590422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of temperature and its combination with high light intensity on lipid production of Monoraphidium dybowskii Y2 from semi-arid desert areas.
    He Q; Yang H; Hu C
    Bioresour Technol; 2018 Oct; 265():407-414. PubMed ID: 29933188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation.
    Liu J; Yuan C; Hu G; Li F
    Appl Biochem Biotechnol; 2012 Apr; 166(8):2127-37. PubMed ID: 22415786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid neutral lipid accumulation of the alkali-resistant oleaginous Monoraphidium dybowskii LB50 by NaCl induction.
    Yang H; He Q; Rong J; Xia L; Hu C
    Bioresour Technol; 2014 Nov; 172():131-137. PubMed ID: 25255189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of nutrient formulations on growth, lipid yield, carbon partitioning and biodiesel quality potential of Botryococcus sp. and Chlorella sp.
    Vishwakarma R; Dhar DW; Saxena S
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7589-7600. PubMed ID: 30659489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077.
    Pancha I; Chokshi K; Mishra S
    Bioresour Technol; 2015 Mar; 179():565-572. PubMed ID: 25579231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of spectral intensity and quality of LED lighting on photoacclimation, carbon allocation and high-value pigments in microalgae.
    McGee D; Archer L; Fleming GTA; Gillespie E; Touzet N
    Photosynth Res; 2020 Jan; 143(1):67-80. PubMed ID: 31705368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with open raceway pond.
    He Q; Yang H; Hu C
    Bioresour Technol; 2016 Oct; 218():571-9. PubMed ID: 27403859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatonin and photoinduction.
    Li D; Zhao Y; Ding W; Zhao P; Xu JW; Li T; Ma H; Yu X
    Bioresour Technol; 2017 Jul; 235():104-112. PubMed ID: 28365337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies.
    Thawechai T; Cheirsilp B; Louhasakul Y; Boonsawang P; Prasertsan P
    Bioresour Technol; 2016 Nov; 219():139-149. PubMed ID: 27484670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
    Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the potential of 10 microalgal strains for biodiesel production.
    Song M; Pei H; Hu W; Ma G
    Bioresour Technol; 2013 Aug; 141():245-51. PubMed ID: 23489572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation.
    Kim CW; Sung MG; Nam K; Moon M; Kwon JH; Yang JW
    Bioresour Technol; 2014 May; 159():30-5. PubMed ID: 24632438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microalgal growth with intracellular phosphorus for achieving high biomass growth rate and high lipid/triacylglycerol content simultaneously.
    Wu YH; Yu Y; Hu HY
    Bioresour Technol; 2015 Sep; 192():374-81. PubMed ID: 26056779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixotrophy in green microalgae grown on an organic and nutrient rich waste.
    Candido C; Lombardi AT
    World J Microbiol Biotechnol; 2020 Jan; 36(2):20. PubMed ID: 31955252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions.
    Li Y; Han D; Sommerfeld M; Hu Q
    Bioresour Technol; 2011 Jan; 102(1):123-9. PubMed ID: 20594832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation.
    Cheirsilp B; Torpee S
    Bioresour Technol; 2012 Apr; 110():510-6. PubMed ID: 22361073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.