These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2599732)

  • 41. Platelet system changes associated with a training period of 18-20 months: a transverse and a longitudinal approach.
    van Wersch JW; Kaiser V; Janssen GM
    Int J Sports Med; 1989 Oct; 10 Suppl 3():S181-5. PubMed ID: 2599738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Marathon running: functional changes in male and female subjects during training and contests. Introduction.
    Janssen GM; ten Hoor F
    Int J Sports Med; 1989 Oct; 10 Suppl 3():S118-23. PubMed ID: 2599728
    [No Abstract]   [Full Text] [Related]  

  • 43. Biochemical analysis of muscle biopsy in overnight fasting patients with severe chronic heart failure.
    Opasich C; Aquilani R; Dossena M; Foppa P; Catapano M; Pagani S; Pasini E; Ferrari R; Tavazzi L; Pastoris O
    Eur Heart J; 1996 Nov; 17(11):1686-93. PubMed ID: 8922917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil.
    Nowak TS; Fried RL; Lust WD; Passonneau JV
    J Neurochem; 1985 Feb; 44(2):487-94. PubMed ID: 3965620
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effect of galascorbin and ascorbic acid on the glycogen and ATP content in the animal muscle at work].
    NIKONOVA VO
    Ukr Biokhim Zh; 1961; 33():537-44. PubMed ID: 14479862
    [No Abstract]   [Full Text] [Related]  

  • 46. Preliminary studies of energy-rich phosphagens in muscle from severely ill patients.
    Bergström J; Boström H; Fürst P; Hultman E; Vinnars E
    Crit Care Med; 1976; 4(4):197-204. PubMed ID: 939115
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A combined analysis of regional energy metabolism and immunohistochemical ischemic damage in the gerbil brain.
    Ueda H; Tagawa K; Furuya E; Matsumoto M; Yanagihara T
    J Neurochem; 1999 Mar; 72(3):1232-42. PubMed ID: 10037496
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of intermediary metabolism in the maintenance of proton and charge balance during exercise.
    Parkhouse WS; Dobson GP; Belcastro AN; Hochachka PW
    Mol Cell Biochem; 1987 Sep; 77(1):37-47. PubMed ID: 2827001
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of guanine and adenine nucleotides as activators of glucose-1,6-bisphosphatase activity from rat skeletal muscle.
    Bassols A; Andrés V; Ballarín M; Mahy N; Carreras J; Cussó R
    Arch Biochem Biophys; 1991 Nov; 291(1):121-5. PubMed ID: 1656884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Muscle adenosine 5'-triphosphate and creatine phosphate concentrations in relation to nutritional status and sepsis in man.
    Tresadern JC; Threlfall CJ; Wilford K; Irving MH
    Clin Sci (Lond); 1988 Sep; 75(3):233-42. PubMed ID: 3416559
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Work performance, thermoregulation and muscle metabolism in thyroidectomized goats (Capra hircus).
    Kaciuba-Usciłko H; Jessen C; Feistkorn G; Brzezinska Z
    Comp Biochem Physiol A Comp Physiol; 1987; 87(4):915-21. PubMed ID: 2887390
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isotachophoretic analysis of some compounds involved in energy metabolism in normal and pathological human muscle extracts.
    Brolsma MF; Oerlemans FT; Verburg MP; De Bruyn CH
    Adv Exp Med Biol; 1984; 165 Pt B():415-8. PubMed ID: 6720438
    [No Abstract]   [Full Text] [Related]  

  • 53. Residue propensities, discrimination and binding site prediction of adenine and guanine phosphates.
    Firoz A; Malik A; Joplin KH; Ahmad Z; Jha V; Ahmad S
    BMC Biochem; 2011 May; 12():20. PubMed ID: 21569447
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Muscle metabolism in children--a review.
    Eriksson BO
    Acta Paediatr Scand Suppl; 1980; 283():20-8. PubMed ID: 6452023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of principles of metabolic control to the problem of metabolic limitations in sprinting, middle-distance, and marathon running.
    Newsholme EA
    Int J Sports Med; 1986 Jun; 7 Suppl 1():66-70. PubMed ID: 3017875
    [No Abstract]   [Full Text] [Related]  

  • 56. [Macroergic phosphates in the brain under hypoxia].
    Khvatova EM; Mironova GV; Shvets NA; Seroglazova GS
    Vopr Med Khim; 1976; 22(4):493-7. PubMed ID: 1027235
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis.
    Bhatt DP; Houdek HM; Watt JA; Rosenberger TA
    Neurochem Int; 2013 Feb; 62(3):296-305. PubMed ID: 23321384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens.
    Ellington WR
    J Exp Biol; 1989 May; 143():177-94. PubMed ID: 2543728
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Life-long sports engagement enhances adult erythrocyte adenylate energetics.
    Pospieszna B; Kusy K; Slominska EM; Zieliński J
    Sci Rep; 2021 Dec; 11(1):23759. PubMed ID: 34887502
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cerebral high-energy phosphates during insulin hypoglycemia.
    TARR M; BRADA D; SAMSON FE
    Am J Physiol; 1962 Oct; 203():690-2. PubMed ID: 13993362
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.