These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25997344)

  • 1. Reconstituting cytoskeletal contraction events with biomimetic actin-myosin active gels.
    Alvarado J; Koenderink GH
    Methods Cell Biol; 2015; 128():83-103. PubMed ID: 25997344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of contraction by gelation/solation in a reconstituted motile model.
    Janson LW; Kolega J; Taylor DL
    J Cell Biol; 1991 Sep; 114(5):1005-15. PubMed ID: 1651941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the dynamic precursors to motor-driven contraction of active gels.
    Alvarado J; Cipelletti L; Koenderink GH
    Soft Matter; 2019 Oct; 15(42):8552-8565. PubMed ID: 31637398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin-II activity generates a dynamic steady state with continuous actin turnover in a minimal actin cortex.
    Sonal ; Ganzinger KA; Vogel SK; Mücksch J; Blumhardt P; Schwille P
    J Cell Sci; 2018 Dec; 132(4):. PubMed ID: 30538127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of solation-contraction coupling in regulating stress fiber dynamics in nonmuscle cells.
    Kolega J; Janson LW; Taylor DL
    J Cell Biol; 1991 Sep; 114(5):993-1003. PubMed ID: 1874793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boundaries steer the contraction of active gels.
    Schuppler M; Keber FC; Kröger M; Bausch AR
    Nat Commun; 2016 Oct; 7():13120. PubMed ID: 27739426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anillin propels myosin-independent constriction of actin rings.
    Kučera O; Siahaan V; Janda D; Dijkstra SH; Pilátová E; Zatecka E; Diez S; Braun M; Lansky Z
    Nat Commun; 2021 Jul; 12(1):4595. PubMed ID: 34321459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The elongation and contraction of actin bundles are induced by double-headed myosins in a motor concentration-dependent manner.
    Tanaka-Takiguchi Y; Kakei T; Tanimura A; Takagi A; Honda M; Hotani H; Takiguchi K
    J Mol Biol; 2004 Aug; 341(2):467-76. PubMed ID: 15276837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contraction mechanisms in composite active actin networks.
    Köhler S; Bausch AR
    PLoS One; 2012; 7(7):e39869. PubMed ID: 22768316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contraction of reconstituted Dictyostelium cytoskeletons: an apparent role for higher order associations among myosin filaments.
    Aguado-Velasco C; Kuczmarski ER
    Cell Motil Cytoskeleton; 1993; 26(2):103-14. PubMed ID: 8287496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of actin, myosin, and an actin-binding protein of chronic myelogenous leukemia leukocytes.
    Boxer LA; Stossel TP
    J Clin Invest; 1976 Apr; 57(4):964-76. PubMed ID: 133121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarity sorting drives remodeling of actin-myosin networks.
    Wollrab V; Belmonte JM; Baldauf L; Leptin M; Nédeléc F; Koenderink GH
    J Cell Sci; 2018 Dec; 132(4):. PubMed ID: 30404824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles.
    Mavrakis M; Azou-Gros Y; Tsai FC; Alvarado J; Bertin A; Iv F; Kress A; Brasselet S; Koenderink GH; Lecuit T
    Nat Cell Biol; 2014 Apr; 16(4):322-34. PubMed ID: 24633326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of filamin and controlled linear shear on the microheterogeneity of F-actin/gelsolin gels.
    Cortese JD; Frieden C
    Cell Motil Cytoskeleton; 1990; 17(3):236-49. PubMed ID: 2176572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic network morphology and tension buildup in a 3D model of cytokinetic ring assembly.
    Bidone TC; Tang H; Vavylonis D
    Biophys J; 2014 Dec; 107(11):2618-28. PubMed ID: 25468341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Versatile Framework for Simulating the Dynamic Mechanical Structure of Cytoskeletal Networks.
    Freedman SL; Banerjee S; Hocky GM; Dinner AR
    Biophys J; 2017 Jul; 113(2):448-460. PubMed ID: 28746855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.
    Nikmaneshi MR; Firoozabadi B; Saidi MS
    J Biomech; 2018 Jan; 67():37-45. PubMed ID: 29217089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poorly understood aspects of striated muscle contraction.
    Månsson A; Rassier D; Tsiavaliaris G
    Biomed Res Int; 2015; 2015():245154. PubMed ID: 25961006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generalized Flory-Stockmayer kinetic theory of connectivity percolation and rigidity percolation of cytoskeletal networks.
    Bueno C; Liman J; Schafer NP; Cheung MS; Wolynes PG
    PLoS Comput Biol; 2022 May; 18(5):e1010105. PubMed ID: 35533192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corneal keratocytes: in situ and in vitro organization of cytoskeletal contractile proteins.
    Jester JV; Barry PA; Lind GJ; Petroll WM; Garana R; Cavanagh HD
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):730-43. PubMed ID: 8113024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.