These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 25997359)

  • 1. Comparative Shotgun Proteomic Analysis of Wastewater-Cultured Microalgae: Nitrogen Sensing and Carbon Fixation for Growth and Nutrient Removal in Chlamydomonas reinhardtii.
    Patel AK; Huang EL; Low-Décarie E; Lefsrud MG
    J Proteome Res; 2015 Aug; 14(8):3051-67. PubMed ID: 25997359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of energy microalgae Chlamydomonas reinhardtii to nitrogen and phosphorus stress.
    Wang Y; Yu J; Wang P; Deng S; Chang J; Ran Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5762-5770. PubMed ID: 29230652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant.
    Krishnan A; Kumaraswamy GK; Vinyard DJ; Gu H; Ananyev G; Posewitz MC; Dismukes GC
    Plant J; 2015 Mar; 81(6):947-60. PubMed ID: 25645872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cost-effective approach to produce
    Nicolás Carcelén J; Marchante-Gayón JM; González PR; Valledor L; Cañal MJ; Alonso JIG
    Microb Cell Fact; 2017 Aug; 16(1):146. PubMed ID: 28821247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media.
    Scherholz ML; Curtis WR
    BMC Biotechnol; 2013 May; 13():39. PubMed ID: 23651806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas.
    Remacle C; Eppe G; Coosemans N; Fernandez E; Vigeolas H
    J Exp Bot; 2014 Jan; 65(1):23-33. PubMed ID: 24187418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling.
    Wase N; Black PN; Stanley BA; DiRusso CC
    J Proteome Res; 2014 Mar; 13(3):1373-96. PubMed ID: 24528286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling Chlamydomonas metabolism under dark, anoxic H2-producing conditions using a combined proteomic, transcriptomic, and metabolomic approach.
    Subramanian V; Dubini A; Astling DP; Laurens LM; Old WM; Grossman AR; Posewitz MC; Seibert M
    J Proteome Res; 2014 Dec; 13(12):5431-51. PubMed ID: 25333711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.
    Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H
    Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing growth of Chlamydomonas reinhardtii and nutrient removal in diluted primary piggery wastewater by elevated CO
    Qi F; Xu Y; Yu Y; Liang X; Zhang L; Zhao H; Wang H
    Water Sci Technol; 2017 May; 75(10):2281-2290. PubMed ID: 28541935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of tetracycline on the growth and nutrient removal capacity of Chlamydomonas reinhardtii in simulated effluent from wastewater treatment plants.
    Li J; Zheng X; Liu K; Sun S; Li X
    Bioresour Technol; 2016 Oct; 218():1163-9. PubMed ID: 27472492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production.
    Kong QX; Li L; Martinez B; Chen P; Ruan R
    Appl Biochem Biotechnol; 2010 Jan; 160(1):9-18. PubMed ID: 19507059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast microbial nitrogen-assimilation technology enhances nitrogen migration and single-cell-protein production in high-ammonia piggery wastewater.
    Lu Q; Li H; Liu H; Xu Z; Saikaly PE; Zhang W
    Environ Res; 2024 Sep; 257():119329. PubMed ID: 38851372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium.
    Lee DY; Park JJ; Barupal DK; Fiehn O
    Mol Cell Proteomics; 2012 Oct; 11(10):973-88. PubMed ID: 22787274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses.
    Wienkoop S; Weiss J; May P; Kempa S; Irgang S; Recuenco-Munoz L; Pietzke M; Schwemmer T; Rupprecht J; Egelhofer V; Weckwerth W
    Mol Biosyst; 2010 Jun; 6(6):1018-31. PubMed ID: 20358043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of the mitoproteome to nitrogen sources (nitrate and ammonium) in Chlamydomonas reinhardtii: the logic of Aox1 gene localization.
    Gérin S; Mathy G; Blomme A; Franck F; Sluse FE
    Biochim Biophys Acta; 2010; 1797(6-7):994-1003. PubMed ID: 20211595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HILIC- and SCX-based quantitative proteomics of Chlamydomonas reinhardtii during nitrogen starvation induced lipid and carbohydrate accumulation.
    Longworth J; Noirel J; Pandhal J; Wright PC; Vaidyanathan S
    J Proteome Res; 2012 Dec; 11(12):5959-71. PubMed ID: 23113808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Influence of methanol on the content of NAD(P)H, free amino acids and protein in the cells of Chlamydomonas reinhartdii].
    Stepanov SS; Zolotar'ova OK
    Ukr Biokhim Zh (1999); 2013; 85(4):82-9. PubMed ID: 24319976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Cost Greywater Treatment Using Polyculture Microalgae-Microalgal Growth, Organics, and Nutrient Removal Subject to pH and Temperature Variations During the Treatment.
    Mohit A; Remya N
    Appl Biochem Biotechnol; 2024 May; 196(5):2728-2740. PubMed ID: 36692649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.