BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 2599767)

  • 1. Asparagine coupling in Fmoc solid phase peptide synthesis.
    Gausepohl H; Kraft M; Frank RW
    Int J Pept Protein Res; 1989 Oct; 34(4):287-94. PubMed ID: 2599767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple synthesis by the multipin method as a methodological tool.
    Bray AM; Valerio RM; DiPasquale AJ; Greig J; Maeji NJ
    J Pept Sci; 1995; 1(1):80-7. PubMed ID: 9222986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel N omega-xanthenyl-protecting groups for asparagine and glutamine, and applications to N alpha-9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis.
    Han Y; Solé NA; Tejbrant J; Barany G
    Pept Res; 1996; 9(4):166-73. PubMed ID: 8914163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Fmoc/solid-phase synthesis of Abu(P)-containing peptides using Fmoc-Abu(PO3Me2)-OH.
    Perich JW
    Int J Pept Protein Res; 1994 Sep; 44(3):288-94. PubMed ID: 7822106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-labile anchoring linkages for solid phase synthesis of C-terminal asparagine peptides using the Fmoc strategy.
    Shao J; Li YH; Voelter W
    Int J Pept Protein Res; 1990 Aug; 36(2):182-7. PubMed ID: 2272754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis.
    King DS; Fields CG; Fields GB
    Int J Pept Protein Res; 1990 Sep; 36(3):255-66. PubMed ID: 2279849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of methods for the Fmoc solid-phase synthesis and cleavage of a peptide containing both tryptophan and arginine.
    Choi H; Aldrich JV
    Int J Pept Protein Res; 1993 Jul; 42(1):58-63. PubMed ID: 8103765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HBTU activation for automated Fmoc solid-phase peptide synthesis.
    Fields CG; Lloyd DH; Macdonald RL; Otteson KM; Noble RL
    Pept Res; 1991; 4(2):95-101. PubMed ID: 1815783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incomplete TFA deprotection of N-terminal trityl-asparagine residue in fmoc solid-phase peptide chemistry.
    Friede M; Denery S; Neimark J; Kieffer S; Gausepohl H; Briand JP
    Pept Res; 1992; 5(3):145-7. PubMed ID: 1421802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edman degradation sequence analysis of resin-bound peptides synthesized by 9-fluorenylmethoxycarbonyl chemistry.
    Fields CG; VanDrisse VL; Fields GB
    Pept Res; 1993; 6(1):39-47. PubMed ID: 8439735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of peptide amides by Fmoc-solid-phase peptide synthesis and acid labile anchor groups.
    Stüber W; Knolle J; Breipohl G
    Int J Pept Protein Res; 1989 Sep; 34(3):215-21. PubMed ID: 2599759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile SPS of peptides having C-terminal Asn and Gln.
    Breipohl G; Knolle J; Stüber W
    Int J Pept Protein Res; 1990 Mar; 35(3):281-3. PubMed ID: 2354879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis.
    McCurdy SN
    Pept Res; 1989; 2(1):147-52. PubMed ID: 2577698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-phase synthesis of peptides with C-terminal asparagine or glutamine. An effective, mild procedure based on N alpha-fluorenylmethyloxycarbonyl (Fmoc) protection and side-chain anchoring to a tris(alkoxy)benzylamide (PAL) handle.
    Albericio F; van Abel R; Barany G
    Int J Pept Protein Res; 1990 Mar; 35(3):284-6. PubMed ID: 2354880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of crown ethers in peptide chemistry-V. Solid-phase synthesis of peptides by the fragment condensation approach using crown ethers as non-covalent protecting groups.
    Botti P; Ball HL; Lucietto P; Pinori M; Rizzi E; Mascagni P
    J Pept Sci; 1996; 2(6):371-80. PubMed ID: 9230465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkylation of tryptophan during deprotection of Tmob-protected carboxamide side chains.
    Shah D; Schneider A; Babler S; Gandhi R; Van Noord E; Chess E
    Pept Res; 1992; 5(4):241-4. PubMed ID: 1421810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and application of acid labile anchor groups for the synthesis of peptide amides by Fmoc-solid-phase peptide synthesis.
    Breipohl G; Knolle J; Stüber W
    Int J Pept Protein Res; 1989 Oct; 34(4):262-7. PubMed ID: 2599764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxy-terminal sequencing: formation and hydrolysis of C-terminal peptidylthiohydantoins.
    Bailey JM; Shively JE
    Biochemistry; 1990 Mar; 29(12):3145-56. PubMed ID: 2337584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with fmoc chemistry and aza-amino acids with heteroatomic side chains.
    Boeglin D; Lubell WD
    J Comb Chem; 2005; 7(6):864-78. PubMed ID: 16283795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.