These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25997789)

  • 21. Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration.
    LaBonne C; Bronner-Fraser M
    Dev Biol; 2000 May; 221(1):195-205. PubMed ID: 10772801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xenopus reduced folate carrier regulates neural crest development epigenetically.
    Li J; Shi Y; Sun J; Zhang Y; Mao B
    PLoS One; 2011; 6(11):e27198. PubMed ID: 22096536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A PTK7/Ror2 Co-Receptor Complex Affects Xenopus Neural Crest Migration.
    Podleschny M; Grund A; Berger H; Rollwitz E; Borchers A
    PLoS One; 2015; 10(12):e0145169. PubMed ID: 26680417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus.
    Tahir R; Kennedy A; Elsea SH; Dickinson AJ
    Mech Dev; 2014 Aug; 133():91-104. PubMed ID: 24878353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural crest specification by Prohibitin1 depends on transcriptional regulation of prl3 and vangl1.
    Deichmann C; Link M; Seyfang M; Knotz V; Gradl D; Wedlich D
    Genesis; 2015 Oct; 53(10):627-39. PubMed ID: 26259516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-regulation of Stat3 activity coordinates cell-cycle progression and neural crest specification.
    Nichane M; Ren X; Bellefroid EJ
    EMBO J; 2010 Jan; 29(1):55-67. PubMed ID: 19851287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prohibitin1 acts as a neural crest specifier in Xenopus development by repressing the transcription factor E2F1.
    Schneider M; Schambony A; Wedlich D
    Development; 2010 Dec; 137(23):4073-81. PubMed ID: 21062864
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Li J; Perfetto M; Neuner R; Bahudhanapati H; Christian L; Mathavan K; Bridges LC; Alfandari D; Wei S
    Development; 2018 Apr; 145(7):. PubMed ID: 29540504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protocadherin PAPC is expressed in the CNC and can compensate for the loss of PCNS.
    Schneider M; Huang C; Becker SF; Gradl D; Wedlich D
    Genesis; 2014 Feb; 52(2):120-6. PubMed ID: 24339193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of Xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest.
    Koehler A; Schlupf J; Schneider M; Kraft B; Winter C; Kashef J
    Dev Biol; 2013 Nov; 383(1):132-45. PubMed ID: 23958437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional analysis of chick ONT1 reveals distinguishable activities among olfactomedin-related signaling factors.
    Sakuragi M; Sasai N; Ikeya M; Kawada M; Onai T; Katahira T; Nakamura H; Sasai Y
    Mech Dev; 2006 Feb; 123(2):114-23. PubMed ID: 16412616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural crest induction by the canonical Wnt pathway can be dissociated from anterior-posterior neural patterning in Xenopus.
    Wu J; Yang J; Klein PS
    Dev Biol; 2005 Mar; 279(1):220-32. PubMed ID: 15708570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An atlas of Wnt activity during embryogenesis in Xenopus tropicalis.
    Borday C; Parain K; Thi Tran H; Vleminckx K; Perron M; Monsoro-Burq AH
    PLoS One; 2018; 13(4):e0193606. PubMed ID: 29672592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Xenopus Zic4: conservation and diversification of expression profiles and protein function among the Xenopus Zic family.
    Fujimi TJ; Mikoshiba K; Aruga J
    Dev Dyn; 2006 Dec; 235(12):3379-86. PubMed ID: 16871625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repulsive guidance molecule A (RGM A) and its receptor neogenin during neural and neural crest cell development of Xenopus laevis.
    Gessert S; Maurus D; Kühl M
    Biol Cell; 2008 Nov; 100(11):659-73. PubMed ID: 18479252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis.
    Barnett C; Yazgan O; Kuo HC; Malakar S; Thomas T; Fitzgerald A; Harbour W; Henry JJ; Krebs JE
    Mech Dev; 2012; 129(9-12):324-38. PubMed ID: 22691402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resolving time and space constraints during neural crest formation and delamination.
    Duband JL; Dady A; Fleury V
    Curr Top Dev Biol; 2015; 111():27-67. PubMed ID: 25662257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2.
    Guiral EC; Faas L; Pownall ME
    Dev Biol; 2010 May; 341(2):375-88. PubMed ID: 20206618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FoxD3 and Grg4 physically interact to repress transcription and induce mesoderm in Xenopus.
    Yaklichkin S; Steiner AB; Lu Q; Kessler DS
    J Biol Chem; 2007 Jan; 282(4):2548-57. PubMed ID: 17138566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulatory targets for transcription factor AP2 in Xenopus embryos.
    Luo T; Zhang Y; Khadka D; Rangarajan J; Cho KW; Sargent TD
    Dev Growth Differ; 2005 Aug; 47(6):403-13. PubMed ID: 16109038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.