These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 25997837)
1. Ghost Cell Suspensions as Blood Analogue Fluid for Macroscopic Particle Image Velocimetry Measurements. Jansen SV; Müller I; Nachtsheim M; Schmitz-Rode T; Steinseifer U Artif Organs; 2016 Feb; 40(2):207-12. PubMed ID: 25997837 [TBL] [Abstract][Full Text] [Related]
2. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model. Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081 [TBL] [Abstract][Full Text] [Related]
3. Towards a Novel Spatially-Resolved Hemolysis Detection Method Using a Fluorescent Indicator and Loaded Ghost Cells: Proof-of-Principle. Jansen SV; Müller I; Kiesendahl N; Schmitz-Rode T; Steinseifer U Cardiovasc Eng Technol; 2015 Sep; 6(3):376-82. PubMed ID: 26577368 [TBL] [Abstract][Full Text] [Related]
4. Ghost cells as a two-phase blood analog fluid-high-volume and high-concentration production. Schürmann BJ; Creutz P; Schmitz-Rode T; Steinseifer U; Clauser JC Artif Organs; 2024 Aug; ():. PubMed ID: 39189702 [TBL] [Abstract][Full Text] [Related]
5. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry. Kaesler A; Schlanstein PC; Hesselmann F; Büsen M; Klaas M; Roggenkamp D; Schmitz-Rode T; Steinseifer U; Arens J Artif Organs; 2017 Jun; 41(6):529-538. PubMed ID: 27925231 [TBL] [Abstract][Full Text] [Related]
6. Velocity measurement accuracy in optical microhemodynamics: experiment and simulation. Chayer B; L Pitts K; Cloutier G; Fenech M Physiol Meas; 2012 Oct; 33(10):1585-602. PubMed ID: 22945542 [TBL] [Abstract][Full Text] [Related]
7. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. Lima R; Wada S; Takeda M; Tsubota K; Yamaguchi T J Biomech; 2007; 40(12):2752-7. PubMed ID: 17399723 [TBL] [Abstract][Full Text] [Related]
8. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels. Ha H; Nam KH; Lee SJ Microvasc Res; 2012 Nov; 84(3):242-8. PubMed ID: 22820216 [TBL] [Abstract][Full Text] [Related]
9. Particle image velocimetry in the investigation of flow past artificial heart valves. Lim WL; Chew YT; Chew TC; Low HT Ann Biomed Eng; 1994; 22(3):307-18. PubMed ID: 7978551 [TBL] [Abstract][Full Text] [Related]
10. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results. Liu L; Zheng H; Williams L; Zhang F; Wang R; Hertzberg J; Shandas R Phys Med Biol; 2008 Mar; 53(5):1397-412. PubMed ID: 18296769 [TBL] [Abstract][Full Text] [Related]
11. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. Kheradvar A; Houle H; Pedrizzetti G; Tonti G; Belcik T; Ashraf M; Lindner JR; Gharib M; Sahn D J Am Soc Echocardiogr; 2010 Jan; 23(1):86-94. PubMed ID: 19836203 [TBL] [Abstract][Full Text] [Related]
12. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows. Lee SJ; Park HW; Jung SY J Synchrotron Radiat; 2014 Sep; 21(Pt 5):1160-6. PubMed ID: 25178007 [TBL] [Abstract][Full Text] [Related]
13. A simple method for the investigation of cell separation effects of blood with physiological hematocrit values. Gester K; Jansen SV; Stahl M; Steinseifer U Artif Organs; 2015 May; 39(5):432-40. PubMed ID: 25377596 [TBL] [Abstract][Full Text] [Related]
14. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Smith ML; Long DS; Damiano ER; Ley K Biophys J; 2003 Jul; 85(1):637-45. PubMed ID: 12829517 [TBL] [Abstract][Full Text] [Related]
15. A Novel Plasma-Based Fluid for Particle Image Velocimetry (PIV): In-Vitro Feasibility Study of Flow Diverter Effects in Aneurysm Model. Clauser J; Knieps MS; Büsen M; Ding A; Schmitz-Rode T; Steinseifer U; Arens J; Cattaneo G Ann Biomed Eng; 2018 Jun; 46(6):841-848. PubMed ID: 29488139 [TBL] [Abstract][Full Text] [Related]
16. In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion. Sugii Y; Nishio S; Okamoto K Physiol Meas; 2002 May; 23(2):403-16. PubMed ID: 12051311 [TBL] [Abstract][Full Text] [Related]
17. Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept. Schlanstein PC; Hesselmann F; Jansen SV; Gemsa J; Kaufmann TA; Klaas M; Roggenkamp D; Schröder W; Schmitz-Rode T; Steinseifer U; Arens J Cardiovasc Eng Technol; 2015 Sep; 6(3):340-51. PubMed ID: 26577365 [TBL] [Abstract][Full Text] [Related]
18. 4-D Echo-Particle Image Velocimetry in a Left Ventricular Phantom. Voorneveld J; Saaid H; Schinkel C; Radeljic N; Lippe B; Gijsen FJH; van der Steen AFW; de Jong N; Claessens T; Vos HJ; Kenjeres S; Bosch JG Ultrasound Med Biol; 2020 Mar; 46(3):805-817. PubMed ID: 31924419 [TBL] [Abstract][Full Text] [Related]
20. [Particle image velocimetry in measuring the flow fields distribution in carotid artery bifurcation model]. Yu F; Shi Y; Deng W; Chen H; An Q; Guo Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):104-9. PubMed ID: 17333901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]