BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 25998133)

  • 1. Robust and exact structural variation detection with paired-end and soft-clipped alignments: SoftSV compared with eight algorithms.
    Bartenhagen C; Dugas M
    Brief Bioinform; 2016 Jan; 17(1):51-62. PubMed ID: 25998133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bellerophon: a hybrid method for detecting interchromosomal rearrangements at base pair resolution using next-generation sequencing data.
    Hayes M; Li J
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S6. PubMed ID: 23734783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PRISM: pair-read informed split-read mapping for base-pair level detection of insertion, deletion and structural variants.
    Jiang Y; Wang Y; Brudno M
    Bioinformatics; 2012 Oct; 28(20):2576-83. PubMed ID: 22851530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrative probabilistic model for identification of structural variation in sequencing data.
    Sindi SS; Onal S; Peng LC; Wu HT; Raphael BJ
    Genome Biol; 2012; 13(3):R22. PubMed ID: 22452995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SoftSearch: integration of multiple sequence features to identify breakpoints of structural variations.
    Hart SN; Sarangi V; Moore R; Baheti S; Bhavsar JD; Couch FJ; Kocher JP
    PLoS One; 2013; 8(12):e83356. PubMed ID: 24358278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next-generation sequencing as a tool for breakpoint analysis in rearrangements of the globin gene clusters.
    Clark BE; Shooter C; Smith F; Brawand D; Thein SL
    Int J Lab Hematol; 2017 May; 39 Suppl 1():111-120. PubMed ID: 28447426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NucBreak: location of structural errors in a genome assembly by using paired-end Illumina reads.
    Khelik K; Sandve GK; Nederbragt AJ; Rognes T
    BMC Bioinformatics; 2020 Feb; 21(1):66. PubMed ID: 32085722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ClipCrop: a tool for detecting structural variations with single-base resolution using soft-clipping information.
    Suzuki S; Yasuda T; Shiraishi Y; Miyano S; Nagasaki M
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S7. PubMed ID: 22373054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SRinversion: a tool for detecting short inversions by splitting and re-aligning poorly mapped and unmapped sequencing reads.
    Chen R; Lau YL; Zhang Y; Yang W
    Bioinformatics; 2016 Dec; 32(23):3559-3565. PubMed ID: 27503227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting exact breakpoints of deletions with diversity in hepatitis B viral genomic DNA from next-generation sequencing data.
    Cheng JH; Liu WC; Chang TT; Hsieh SY; Tseng VS
    Methods; 2017 Oct; 129():24-32. PubMed ID: 28802713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq.
    Barrick JE; Colburn G; Deatherage DE; Traverse CC; Strand MD; Borges JJ; Knoester DB; Reba A; Meyer AG
    BMC Genomics; 2014 Nov; 15(1):1039. PubMed ID: 25432719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of structural variants involving repetitive regions in the reference genome.
    Lee H; Popodi E; Foster PL; Tang H
    J Comput Biol; 2014 Mar; 21(3):219-33. PubMed ID: 24552580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RAPTR-SV: a hybrid method for the detection of structural variants.
    Bickhart DM; Hutchison JL; Xu L; Schnabel RD; Taylor JF; Reecy JM; Schroeder S; Van Tassell CP; Sonstegard TS; Liu GE
    Bioinformatics; 2015 Jul; 31(13):2084-90. PubMed ID: 25686638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REDHORSE-REcombination and Double crossover detection in Haploid Organisms using next-geneRation SEquencing data.
    Shaik JS; Khan A; Beverley SM; Sibley LD
    BMC Genomics; 2015 Feb; 16(1):133. PubMed ID: 25766039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MetaSV: an accurate and integrative structural-variant caller for next generation sequencing.
    Mohiyuddin M; Mu JC; Li J; Bani Asadi N; Gerstein MB; Abyzov A; Wong WH; Lam HY
    Bioinformatics; 2015 Aug; 31(16):2741-4. PubMed ID: 25861968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DB2: a probabilistic approach for accurate detection of tandem duplication breakpoints using paired-end reads.
    Yavaş G; Koyutürk M; Gould MP; McMahon S; LaFramboise T
    BMC Genomics; 2014 Mar; 15(1):175. PubMed ID: 24597945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of k-spectrum-based error correction methods for next-generation sequencing data analysis.
    Akogwu I; Wang N; Zhang C; Gong P
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):20. PubMed ID: 27461106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation and assessment of read-mapping by multiple next-generation sequencing aligners based on genome-wide characteristics.
    Thankaswamy-Kosalai S; Sen P; Nookaew I
    Genomics; 2017 Jul; 109(3-4):186-191. PubMed ID: 28286147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SVachra: a tool to identify genomic structural variation in mate pair sequencing data containing inward and outward facing reads.
    Hampton OA; English AC; Wang M; Salerno WJ; Liu Y; Muzny DM; Han Y; Wheeler DA; Worley KC; Lupski JR; Gibbs RA
    BMC Genomics; 2017 Oct; 18(Suppl 6):691. PubMed ID: 28984202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reference-free prediction of rearrangement breakpoint reads.
    Wijaya E; Shimizu K; Asai K; Hamada M
    Bioinformatics; 2014 Sep; 30(18):2559-67. PubMed ID: 24876376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.