These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25998200)

  • 1. Reversible pH-controlled switching of an artificial antioxidant selenoenzyme based on pseudorotaxane formation and dissociation.
    Li J; Si C; Sun H; Zhu J; Pan T; Liu S; Dong Z; Xu J; Luo Q; Liu J
    Chem Commun (Camb); 2015 Jun; 51(49):9987-90. PubMed ID: 25998200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of pH sensitive smart glutathione peroxidase (GPx) mimics based on pH responsive pseudorotaxanes.
    Li J; Jia W; Ma G; Zhang X; An S; Wang T; Shi S
    Org Biomol Chem; 2020 Apr; 18(16):3125-3134. PubMed ID: 32255146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular vesicle: triggered by formation of pseudorotaxane between cucurbit[6]uril and surfactant.
    Zhou Q; Wang H; Gao T; Yu Y; Ling B; Mao L; Zhang H; Meng X; Zhou X
    Chem Commun (Camb); 2011 Oct; 47(40):11315-7. PubMed ID: 21927725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperbranched polyselenides as glutathione peroxidase mimics.
    Xu H; Gao J; Wang Y; Wang Z; Smet M; Dehaen W; Zhang X
    Chem Commun (Camb); 2006 Feb; (7):796-8. PubMed ID: 16465344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve.
    Sun YL; Yang BJ; Zhang SX; Yang YW
    Chemistry; 2012 Jul; 18(30):9212-6. PubMed ID: 22718563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-responsive mechanised nanoparticles gated by semirotaxanes.
    Khashab NM; Belowich ME; Trabolsi A; Friedman DC; Valente C; Lau Y; Khatib HA; Zink JI; Stoddart JF
    Chem Commun (Camb); 2009 Sep; (36):5371-3. PubMed ID: 19724788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl beta-cyclodextrin and cucurbit[7]uril.
    Ooya T; Inoue D; Choi HS; Kobayashi Y; Loethen S; Thompson DH; Ko YH; Kim K; Yui N
    Org Lett; 2006 Jul; 8(15):3159-62. PubMed ID: 16836355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes.
    Angelos S; Yang YW; Patel K; Stoddart JF; Zink JI
    Angew Chem Int Ed Engl; 2008; 47(12):2222-6. PubMed ID: 18275057
    [No Abstract]   [Full Text] [Related]  

  • 9. A heterowheel [3]pseudorotaxane by integrating β-cyclodextrin and cucurbit[8]uril inclusion complexes.
    Ding ZJ; Zhang HY; Wang LH; Ding F; Liu Y
    Org Lett; 2011 Mar; 13(5):856-9. PubMed ID: 21268596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the mechanism of the glutathione peroxidase mimic ebselen.
    Antony S; Bayse CA
    Inorg Chem; 2011 Dec; 50(23):12075-84. PubMed ID: 22059718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible Ca(2+) switch of an engineered allosteric antioxidant selenoenzyme.
    Zhang C; Pan T; Salesse C; Zhang D; Miao L; Wang L; Gao Y; Xu J; Dong Z; Luo Q; Liu J
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13536-9. PubMed ID: 25286773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox control of GPx catalytic activity through mediating self-assembly of Fmoc-phenylalanine selenide into switchable supramolecular architectures.
    Huang Z; Luo Q; Guan S; Gao J; Wang Y; Zhang B; Wang L; Xu J; Dong Z; Liu J
    Soft Matter; 2014 Dec; 10(48):9695-701. PubMed ID: 25366375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigurable four-component molecular switch based on pH-controlled guest swapping.
    Chakrabarti S; Mukhopadhyay P; Lin S; Isaacs L
    Org Lett; 2007 Jun; 9(12):2349-52. PubMed ID: 17500562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion of carboxyl function inside of cucurbiturils and its use in molecular switches.
    Kolman V; Kulhanek P; Sindelar V
    Chem Asian J; 2010 Nov; 5(11):2386-92. PubMed ID: 20839273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril.
    Liu Y; Ke CF; Zhang HY; Wu WJ; Shi J
    J Org Chem; 2007 Jan; 72(1):280-3. PubMed ID: 17194112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants.
    Bhabak KP; Mugesh G
    Acc Chem Res; 2010 Nov; 43(11):1408-19. PubMed ID: 20690615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Design and Study of Artificial Selenoenzyme with Controllable Activity Based on an Allosteric Protein Scaffold.
    Li S; Xu W; Chu S; Ma N; Liu S; Li X; Wang T; Jiang X; Li F; Li Y; Zhang D; Luo Q; Liu J
    Chemistry; 2019 Aug; 25(44):10350-10358. PubMed ID: 31069854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Glutathione Peroxidase and Peroxiredoxin Mimetics Protect Mammalian Cells against Oxidative Damage.
    Bhowmick D; Srivastava S; D'Silva P; Mugesh G
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8449-53. PubMed ID: 26032473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-Triggered dethreading-rethreading and switching of cucurbit[6]uril on bistable [3]pseudorotaxanes and [3]rotaxanes.
    Tuncel D; Katterle M
    Chemistry; 2008; 14(13):4110-6. PubMed ID: 18348131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cucurbit[8]uril rotaxanes.
    Ramalingam V; Urbach AR
    Org Lett; 2011 Sep; 13(18):4898-901. PubMed ID: 21846094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.