These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 25998906)
41. How many salicylic acid receptors does a plant cell need? Kaltdorf M; Naseem M Sci Signal; 2013 Jun; 6(279):jc3. PubMed ID: 23757021 [TBL] [Abstract][Full Text] [Related]
42. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Wu Y; Zhang D; Chu JY; Boyle P; Wang Y; Brindle ID; De Luca V; Després C Cell Rep; 2012 Jun; 1(6):639-47. PubMed ID: 22813739 [TBL] [Abstract][Full Text] [Related]
43. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Zeier J; Pink B; Mueller MJ; Berger S Planta; 2004 Aug; 219(4):673-83. PubMed ID: 15098125 [TBL] [Abstract][Full Text] [Related]
44. Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. Rayapuram C; Baldwin IT Plant J; 2007 Nov; 52(4):700-15. PubMed ID: 17850230 [TBL] [Abstract][Full Text] [Related]
45. The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. Rochon A; Boyle P; Wignes T; Fobert PR; Després C Plant Cell; 2006 Dec; 18(12):3670-85. PubMed ID: 17172357 [TBL] [Abstract][Full Text] [Related]
46. Salicylic acid has a role in regulating gene expression during leaf senescence. Morris K; MacKerness SA; Page T; John CF; Murphy AM; Carr JP; Buchanan-Wollaston V Plant J; 2000 Sep; 23(5):677-85. PubMed ID: 10972893 [TBL] [Abstract][Full Text] [Related]
47. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Zhou JM; Trifa Y; Silva H; Pontier D; Lam E; Shah J; Klessig DF Mol Plant Microbe Interact; 2000 Feb; 13(2):191-202. PubMed ID: 10659709 [TBL] [Abstract][Full Text] [Related]
48. Pandemonium Breaks Out: Disruption of Salicylic Acid-Mediated Defense by Plant Pathogens. Qi G; Chen J; Chang M; Chen H; Hall K; Korin J; Liu F; Wang D; Fu ZQ Mol Plant; 2018 Dec; 11(12):1427-1439. PubMed ID: 30336330 [TBL] [Abstract][Full Text] [Related]
49. Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. Lee HJ; Park YJ; Seo PJ; Kim JH; Sim HJ; Kim SG; Park CM Plant Cell; 2015 Dec; 27(12):3425-38. PubMed ID: 26672073 [TBL] [Abstract][Full Text] [Related]
50. Salicylic Acid Binding Proteins (SABPs): The Hidden Forefront of Salicylic Acid Signalling. Pokotylo I; Kravets V; Ruelland E Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31489905 [TBL] [Abstract][Full Text] [Related]
51. Salicylic acid: an old hormone up to new tricks. Boatwright JL; Pajerowska-Mukhtar K Mol Plant Pathol; 2013 Aug; 14(6):623-34. PubMed ID: 23621321 [TBL] [Abstract][Full Text] [Related]
52. Singlet oxygen-mediated and EXECUTER-dependent signalling and acclimation of Arabidopsis thaliana exposed to light stress. Zhang S; Apel K; Kim C Philos Trans R Soc Lond B Biol Sci; 2014 Apr; 369(1640):20130227. PubMed ID: 24591714 [TBL] [Abstract][Full Text] [Related]
53. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Zhang Y; Xu S; Ding P; Wang D; Cheng YT; He J; Gao M; Xu F; Li Y; Zhu Z; Li X; Zhang Y Proc Natl Acad Sci U S A; 2010 Oct; 107(42):18220-5. PubMed ID: 20921422 [TBL] [Abstract][Full Text] [Related]
54. Recent breakthroughs in the study of salicylic acid biosynthesis. Métraux JP Trends Plant Sci; 2002 Aug; 7(8):332-4. PubMed ID: 12167322 [TBL] [Abstract][Full Text] [Related]
55. Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Alsharafa K; Vogel MO; Oelze ML; Moore M; Stingl N; König K; Friedman H; Mueller MJ; Dietz KJ Philos Trans R Soc Lond B Biol Sci; 2014 Apr; 369(1640):20130424. PubMed ID: 24591725 [TBL] [Abstract][Full Text] [Related]
56. Transcriptional Coactivators: Driving Force of Plant Immunity. Khan MSS; Islam F; Chen H; Chang M; Wang D; Liu F; Fu ZQ; Chen J Front Plant Sci; 2022; 13():823937. PubMed ID: 35154230 [TBL] [Abstract][Full Text] [Related]
57. Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Horváth E; Brunner S; Bela K; Papdi C; Szabados L; Tari I; Csiszár J Funct Plant Biol; 2015 Dec; 42(12):1129-1140. PubMed ID: 32480751 [TBL] [Abstract][Full Text] [Related]
58. Functional switching of NPR1 between chloroplast and nucleus for adaptive response to salt stress. Seo SY; Wi SJ; Park KY Sci Rep; 2020 Mar; 10(1):4339. PubMed ID: 32152424 [TBL] [Abstract][Full Text] [Related]
59. LSD1 and HY5 antagonistically regulate red light induced-programmed cell death in Arabidopsis. Chai T; Zhou J; Liu J; Xing D Front Plant Sci; 2015; 6():292. PubMed ID: 25999965 [TBL] [Abstract][Full Text] [Related]
60. Involvement of phospholipase D in the low temperature acclimation-induced thermotolerance in grape berry. Wan SB; Tian L; Tian RR; Pan QH; Zhan JC; Wen PF; Chen JY; Zhang P; Wang W; Huang WD Plant Physiol Biochem; 2009 Jun; 47(6):504-10. PubMed ID: 19138860 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]