BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25999185)

  • 1. Genetic encoding of the post-translational modification 2-hydroxyisobutyryl-lysine.
    Knight WA; Cropp TA
    Org Biomol Chem; 2015 Jun; 13(23):6479-81. PubMed ID: 25999185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Incorporation of ε-N-2-Hydroxyisobutyryl-lysine into Recombinant Histones.
    Xiao H; Xuan W; Shao S; Liu T; Schultz PG
    ACS Chem Biol; 2015 Jul; 10(7):1599-603. PubMed ID: 25909834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence.
    Fukunaga J; Yokogawa T; Ohno S; Nishikawa K
    J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site Specific Lysine Acetylation of Histones for Nucleosome Reconstitution using Genetic Code Expansion in Escherichia coli.
    Rowlett CM; Liu WR
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33427240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic post-translational modifications of elongation factor P using the ligase EpmA.
    Pfab M; Kielkowski P; Krafczyk R; Volkwein W; Sieber SA; Lassak J; Jung K
    FEBS J; 2021 Jan; 288(2):663-677. PubMed ID: 32337775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Incorporation of N(ε)-Formyllysine, a New Histone Post-translational Modification.
    Wang T; Zhou Q; Li F; Yu Y; Yin X; Wang J
    Chembiochem; 2015 Jul; 16(10):1440-2. PubMed ID: 25914338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemistry: How two amino acids become one.
    Ragsdale SW
    Nature; 2011 Mar; 471(7340):583-4. PubMed ID: 21455167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli.
    Huang Y; Russell WK; Wan W; Pai PJ; Russell DH; Liu W
    Mol Biosyst; 2010 Apr; 6(4):683-6. PubMed ID: 20237646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific incorporation of ε-N-crotonyllysine into histones.
    Kim CH; Kang M; Kim HJ; Chatterjee A; Schultz PG
    Angew Chem Int Ed Engl; 2012 Jul; 51(29):7246-9. PubMed ID: 22689270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
    Kobayashi T; Yanagisawa T; Sakamoto K; Yokoyama S
    J Mol Biol; 2009 Feb; 385(5):1352-60. PubMed ID: 19100747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo.
    Umehara T; Kim J; Lee S; Guo LT; Söll D; Park HS
    FEBS Lett; 2012 Mar; 586(6):729-33. PubMed ID: 22289181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo.
    Katayama H; Nozawa K; Nureki O; Nakahara Y; Hojo H
    Biosci Biotechnol Biochem; 2012; 76(1):205-8. PubMed ID: 22232266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA.
    Soma A; Ikeuchi Y; Kanemasa S; Kobayashi K; Ogasawara N; Ote T; Kato J; Watanabe K; Sekine Y; Suzuki T
    Mol Cell; 2003 Sep; 12(3):689-98. PubMed ID: 14527414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A readily synthesized cyclic pyrrolysine analogue for site-specific protein "click" labeling.
    Hao Z; Song Y; Lin S; Yang M; Liang Y; Wang J; Chen PR
    Chem Commun (Camb); 2011 Apr; 47(15):4502-4. PubMed ID: 21387054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Class I and class II lysyl-tRNA synthetase mutants and the genetic encoding of pyrrolysine in Methanosarcina spp.
    Mahapatra A; Srinivasan G; Richter KB; Meyer A; Lienard T; Zhang JK; Zhao G; Kang PT; Chan M; Gottschalk G; Metcalf WW; Krzycki JA
    Mol Microbiol; 2007 Jun; 64(5):1306-18. PubMed ID: 17542922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine.
    Gaston MA; Zhang L; Green-Church KB; Krzycki JA
    Nature; 2011 Mar; 471(7340):647-50. PubMed ID: 21455182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hacking the genetic code of mammalian cells.
    Schwarzer D
    Chembiochem; 2009 Jul; 10(10):1602-4. PubMed ID: 19533721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-L-lysine analogue.
    Li Y; Pan M; Li Y; Huang Y; Guo Q
    Org Biomol Chem; 2013 Apr; 11(16):2624-9. PubMed ID: 23450369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases.
    Mukai T; Kobayashi T; Hino N; Yanagisawa T; Sakamoto K; Yokoyama S
    Biochem Biophys Res Commun; 2008 Jul; 371(4):818-22. PubMed ID: 18471995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.