These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25999185)

  • 21. Structural Basis for Genetic-Code Expansion with Bulky Lysine Derivatives by an Engineered Pyrrolysyl-tRNA Synthetase.
    Yanagisawa T; Kuratani M; Seki E; Hino N; Sakamoto K; Yokoyama S
    Cell Chem Biol; 2019 Jul; 26(7):936-949.e13. PubMed ID: 31031143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A genetically encoded photocaged Nepsilon-methyl-L-lysine.
    Wang YS; Wu B; Wang Z; Huang Y; Wan W; Russell WK; Pai PJ; Moe YN; Russell DH; Liu WR
    Mol Biosyst; 2010 Sep; 6(9):1557-60. PubMed ID: 20711534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aminoacyl-tRNA synthesis: a postgenomic perspective.
    Stathopoulos C; Ahel I; Ali K; Ambrogelly A; Becker H; Bunjun S; Feng L; Herring S; Jacquin-Becker C; Kobayashi H; Korencic D; Krett B; Mejlhede N; Min B; Nakano H; Namgoong S; Polycarpo C; Raczniak G; Rinehart J; Rosas-Sandoval G; Ruan B; Sabina J; Sauerwald A; Toogood H; Tumbula-Hansen D; Ibba M; Söll D
    Cold Spring Harb Symp Quant Biol; 2001; 66():175-83. PubMed ID: 12762020
    [No Abstract]   [Full Text] [Related]  

  • 24. Genetically encoding N(epsilon)-acetyllysine in recombinant proteins.
    Neumann H; Peak-Chew SY; Chin JW
    Nat Chem Biol; 2008 Apr; 4(4):232-4. PubMed ID: 18278036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
    Commans S; Lazard M; Delort F; Blanquet S; Plateau P
    J Mol Biol; 1998 May; 278(4):801-13. PubMed ID: 9614943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion.
    Hu L; Qin X; Huang Y; Cao W; Wang C; Wang Y; Ling X; Chen H; Wu D; Lin Y; Liu T
    ACS Synth Biol; 2020 Oct; 9(10):2723-2736. PubMed ID: 32931698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovery and characterization of tRNAIle lysidine synthetase (TilS).
    Suzuki T; Miyauchi K
    FEBS Lett; 2010 Jan; 584(2):272-7. PubMed ID: 19944692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification.
    Yanagisawa T; Ishii R; Fukunaga R; Kobayashi T; Sakamoto K; Yokoyama S
    Chem Biol; 2008 Nov; 15(11):1187-97. PubMed ID: 19022179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aminoacyl-tRNA synthesis in Archaea.
    Ibba M; Celic I; Curnow A; Kim H; Pelaschier J; Tumbula D; Vothknecht U; Woese C; Söll D
    Nucleic Acids Symp Ser; 1997; (37):305-6. PubMed ID: 9586121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into incorporation of norbornene amino acids for click modification of proteins.
    Schneider S; Gattner MJ; Vrabel M; Flügel V; López-Carrillo V; Prill S; Carell T
    Chembiochem; 2013 Nov; 14(16):2114-8. PubMed ID: 24027216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular biology: genetic code seizes pyrrolysine.
    Schimmel P; Beebe K
    Nature; 2004 Sep; 431(7006):257-8. PubMed ID: 15372017
    [No Abstract]   [Full Text] [Related]  

  • 32. molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition.
    Ikeuchi Y; Soma A; Ote T; Kato J; Sekine Y; Suzuki T
    Mol Cell; 2005 Jul; 19(2):235-46. PubMed ID: 16039592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry.
    Nguyen DP; Lusic H; Neumann H; Kapadnis PB; Deiters A; Chin JW
    J Am Chem Soc; 2009 Jul; 131(25):8720-1. PubMed ID: 19514718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Versatile Approach for Site-Specific Lysine Acylation in Proteins.
    Wang ZA; Kurra Y; Wang X; Zeng Y; Lee YJ; Sharma V; Lin H; Dai SY; Liu WR
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1643-1647. PubMed ID: 28042700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-translational modification by β-lysylation is required for activity of Escherichia coli elongation factor P (EF-P).
    Park JH; Johansson HE; Aoki H; Huang BX; Kim HY; Ganoza MC; Park MH
    J Biol Chem; 2012 Jan; 287(4):2579-90. PubMed ID: 22128152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for the site-specific incorporation of lysine derivatives into proteins.
    Flügel V; Vrabel M; Schneider S
    PLoS One; 2014; 9(4):e96198. PubMed ID: 24760130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic conversion of cytidine to lysidine in anticodon of bacterial isoleucyl-tRNA--an alternative way of RNA editing.
    Grosjean H; Björk GR
    Trends Biochem Sci; 2004 Apr; 29(4):165-8. PubMed ID: 15124629
    [No Abstract]   [Full Text] [Related]  

  • 38. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.
    Polycarpo CR; Herring S; Bérubé A; Wood JL; Söll D; Ambrogelly A
    FEBS Lett; 2006 Dec; 580(28-29):6695-700. PubMed ID: 17126325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discrimination of cognate and noncognate substrates at the active site of class II lysyl-tRNA synthetase.
    Ataide SF; Ibba M
    Biochemistry; 2004 Sep; 43(37):11836-41. PubMed ID: 15362869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Introducing bioorthogonal functionalities into proteins in living cells.
    Hao Z; Hong S; Chen X; Chen PR
    Acc Chem Res; 2011 Sep; 44(9):742-51. PubMed ID: 21634380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.