These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 25999823)
1. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Kwon KY; Lee HM; Ghovanloo M; Weber A; Li W Front Syst Neurosci; 2015; 9():69. PubMed ID: 25999823 [TBL] [Abstract][Full Text] [Related]
2. A wireless implantable switched-capacitor based optogenetic stimulating system. Lee HM; Kwon KY; Li W; Ghovanloo M Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():878-81. PubMed ID: 25570099 [TBL] [Abstract][Full Text] [Related]
3. A wireless, smartphone controlled, battery powered, head mounted light delivery system for optogenetic stimulation. Kouhani MHM; Luo R; Madi F; Weber AJ; Li W Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3366-3369. PubMed ID: 30441109 [TBL] [Abstract][Full Text] [Related]
4. Optrode Array for Simultaneous Optogenetic Modulation and Electrical Neural Recording. Lee Y; Ryu D; Jeon S; Lee Y; Cho YK; Ji CH; Kim YK; Jun SB J Vis Exp; 2022 Sep; (187):. PubMed ID: 36121270 [TBL] [Abstract][Full Text] [Related]
5. An integrated μLED optrode for optogenetic stimulation and electrical recording. Cao H; Gu L; Mohanty SK; Chiao JC IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201 [TBL] [Abstract][Full Text] [Related]
6. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics. Lu Y; Li Y; Pan J; Wei P; Liu N; Wu B; Cheng J; Lu C; Wang L Biomaterials; 2012 Jan; 33(2):378-94. PubMed ID: 22018384 [TBL] [Abstract][Full Text] [Related]
7. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. Jia Y; Mirbozorgi SA; Lee B; Khan W; Madi F; Inan OT; Weber A; Li W; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):608-618. PubMed ID: 31135371 [TBL] [Abstract][Full Text] [Related]
8. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light. Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161 [TBL] [Abstract][Full Text] [Related]
9. [Development of An Implantable Optrode for Optogenetic Stimulation]. Yue S; Yuan M; Zhang Y; Wang X; Wang S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):337-42. PubMed ID: 29708670 [TBL] [Abstract][Full Text] [Related]
10. Silicon optrode array with monolithically integrated SU-8 waveguide and single LED light source. Ryu D; Lee Y; Lee Y; Lee Y; Hwang S; Kim YK; Jun SB; Lee HW; Ji CH J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35797969 [No Abstract] [Full Text] [Related]
11. Implantable Optrode Array for Optogenetic Modulation and Electrical Neural Recording. Jeon S; Lee Y; Ryu D; Cho YK; Lee Y; Jun SB; Ji CH Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34205473 [TBL] [Abstract][Full Text] [Related]
12. Compact Optical Neural Probes With Up to 20 Integrated Thin-Film μLEDs Applied in Acute Optogenetic Studies. Ayub S; David F; Klein E; Borel M; Paul O; Gentet LJ; Ruther P IEEE Trans Biomed Eng; 2020 Sep; 67(9):2603-2615. PubMed ID: 31940517 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Canales A; Park S; Kilias A; Anikeeva P Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583 [TBL] [Abstract][Full Text] [Related]
14. An Energy-Efficient Optically-Enhanced Highly-Linear Implantable Wirelessly-Powered Bidirectional Optogenetic Neuro-Stimulator. Yousefi T; Taghadosi M; Dabbaghian A; Siu R; Grau G; Zoidl G; Kassiri H IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1274-1286. PubMed ID: 32976106 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. McCall JG; Kim TI; Shin G; Huang X; Jung YH; Al-Hasani R; Omenetto FG; Bruchas MR; Rogers JA Nat Protoc; 2013 Dec; 8(12):2413-2428. PubMed ID: 24202555 [TBL] [Abstract][Full Text] [Related]
16. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies. Ayub S; Gentet LJ; Fiáth R; Schwaerzle M; Borel M; David F; Barthó P; Ulbert I; Paul O; Ruther P Biomed Microdevices; 2017 Sep; 19(3):49. PubMed ID: 28560702 [TBL] [Abstract][Full Text] [Related]
17. Maskless wafer-level microfabrication of optical penetrating neural arrays out of soda-lime glass: Utah Optrode Array. Boutte RW; Blair S Biomed Microdevices; 2016 Dec; 18(6):115. PubMed ID: 27943003 [TBL] [Abstract][Full Text] [Related]
18. Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics. Noh KN; Park SI; Qazi R; Zou Z; Mickle AD; Grajales-Reyes JG; Jang KI; Gereau RW; Xiao J; Rogers JA; Jeong JW Small; 2018 Jan; 14(4):. PubMed ID: 29215787 [TBL] [Abstract][Full Text] [Related]
19. Dense Packed Drivable Optrode Array for Precise Optical Stimulation and Neural Recording in Multiple-Brain Regions. Wang L; Ge C; Wang F; Guo Z; Hong W; Jiang C; Ji B; Wang M; Li C; Sun B; Liu J ACS Sens; 2021 Nov; 6(11):4126-4135. PubMed ID: 34779610 [TBL] [Abstract][Full Text] [Related]
20. A Mechanically Flexible, Implantable Neural Interface for Computational Imaging and Optogenetic Stimulation Over 5.4×5.4mm Moazeni S; Pollmann E; Boominathan V; Cardoso FA; Robinson J; Veeraraghavan A; Shepard K IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1295-1305. PubMed ID: 34951854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]