These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26000295)

  • 1. A large-scale structural classification of antimicrobial peptides.
    Lee HT; Lee CC; Yang JR; Lai JZ; Chang KY
    Biomed Res Int; 2015; 2015():475062. PubMed ID: 26000295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved methods for classification, prediction, and design of antimicrobial peptides.
    Wang G
    Methods Mol Biol; 2015; 1268():43-66. PubMed ID: 25555720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADAPTABLE: a comprehensive web platform of antimicrobial peptides tailored to the user's research.
    Ramos-Martín F; Annaval T; Buchoux S; Sarazin C; D'Amelio N
    Life Sci Alliance; 2019 Dec; 2(6):. PubMed ID: 31740563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale mapping of bioactive peptides in structural and sequence space.
    Nardo AE; Añón MC; Parisi G
    PLoS One; 2018; 13(1):e0191063. PubMed ID: 29351315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptide resistance in Neisseria meningitidis.
    Tzeng YL; Stephens DS
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3026-31. PubMed ID: 26002321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane.
    Carvalho F; Atilano ML; Pombinho R; Covas G; Gallo RL; Filipe SR; Sousa S; Cabanes D
    PLoS Pathog; 2015 May; 11(5):e1004919. PubMed ID: 26001194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease.
    Heimlich DR; Harrison A; Mason KM
    Antibiotics (Basel); 2014 Dec; 3(4):645-76. PubMed ID: 26029470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation nanoantibacterial tools developed from peptides.
    Vries Rd; Andrade CA; Bakuzis AF; Mandal SM; Franco OL
    Nanomedicine (Lond); 2015 May; 10(10):1643-61. PubMed ID: 26008197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.
    Hicks KG; Delbecq SP; Sancho-Vaello E; Blanc MP; Dove KK; Prost LR; Daley ME; Zeth K; Klevit RE; Miller SI
    Elife; 2015 May; 4():e06792. PubMed ID: 26002083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial peptides: Possible anti-infective agents.
    Lakshmaiah Narayana J; Chen JY
    Peptides; 2015 Oct; 72():88-94. PubMed ID: 26048089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents.
    Valdivia-Silva J; Medina-Tamayo J; Garcia-Zepeda EA
    Int J Mol Sci; 2015 Jun; 16(6):12958-85. PubMed ID: 26062132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.
    Nuri R; Shprung T; Shai Y
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.
    Kim YM; Kim NH; Lee JW; Jang JS; Park YH; Park SC; Jang MK
    Biochem Biophys Res Commun; 2015 Jul; 463(3):322-8. PubMed ID: 26028561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of HIV infection by caerin 1 antimicrobial peptides.
    VanCompernolle S; Smith PB; Bowie JH; Tyler MJ; Unutmaz D; Rollins-Smith LA
    Peptides; 2015 Sep; 71():296-303. PubMed ID: 26026377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism.
    Wei L; Gao J; Zhang S; Wu S; Xie Z; Ling G; Kuang YQ; Yang Y; Yu H; Wang Y
    J Biol Chem; 2015 Jul; 290(27):16633-52. PubMed ID: 26013823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of the antimicrobial peptide TP4 against Helicobacter pylori infection: in vitro membrane perturbation via micellization and in vivo suppression of host immune responses in a mouse model.
    Narayana JL; Huang HN; Wu CJ; Chen JY
    Oncotarget; 2015 May; 6(15):12936-54. PubMed ID: 26002554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides.
    Waghu FH; Barai RS; Gurung P; Idicula-Thomas S
    Nucleic Acids Res; 2016 Jan; 44(D1):D1094-7. PubMed ID: 26467475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning improves antimicrobial peptide recognition.
    Veltri D; Kamath U; Shehu A
    Bioinformatics; 2018 Aug; 34(16):2740-2747. PubMed ID: 29590297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAMPR4: a database of natural and synthetic antimicrobial peptides.
    Gawde U; Chakraborty S; Waghu FH; Barai RS; Khanderkar A; Indraguru R; Shirsat T; Idicula-Thomas S
    Nucleic Acids Res; 2023 Jan; 51(D1):D377-D383. PubMed ID: 36370097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
    Salem M; Keshavarzi Arshadi A; Yuan JS
    BMC Bioinformatics; 2022 Sep; 23(1):389. PubMed ID: 36163001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.