These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 26000338)

  • 21. Materials flow modeling of nutrient recycling in biodiesel production from microalgae.
    Rösch C; Skarka J; Wegerer N
    Bioresour Technol; 2012 Mar; 107():191-9. PubMed ID: 22212693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life cycle assessment of microalgae-based aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects.
    Guo F; Zhao J; A L; Yang X
    Bioresour Technol; 2016 Dec; 221():350-357. PubMed ID: 27660987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the acylglycerols and resulting biodiesel derived from vegetable oil and microalgae (Thalassiosira pseudonana and Phaeodactylum tricornutum).
    Zendejas FJ; Benke PI; Lane PD; Simmons BA; Lane TW
    Biotechnol Bioeng; 2012 May; 109(5):1146-54. PubMed ID: 22161571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodiesel from mixed culture algae via a wet lipid extraction procedure.
    Sathish A; Sims RC
    Bioresour Technol; 2012 Aug; 118():643-7. PubMed ID: 22721684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis.
    Dasan YK; Lam MK; Yusup S; Lim JW; Lee KT
    Sci Total Environ; 2019 Oct; 688():112-128. PubMed ID: 31229809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative life cycle assessment study on environmental impact of oil production from micro-algae and terrestrial oilseed crops.
    Jez S; Spinelli D; Fierro A; Dibenedetto A; Aresta M; Busi E; Basosi R
    Bioresour Technol; 2017 Sep; 239():266-275. PubMed ID: 28531851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Algal biomass dehydration.
    Show KY; Lee DJ; Chang JS
    Bioresour Technol; 2013 May; 135():720-9. PubMed ID: 22939595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developments and challenges in biodiesel production from microalgae: A review.
    Taparia T; Mvss M; Mehrotra R; Shukla P; Mehrotra S
    Biotechnol Appl Biochem; 2016 Sep; 63(5):715-726. PubMed ID: 26178774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe.
    Blaas H; Kroeze C
    Sci Total Environ; 2014 Oct; 496():45-53. PubMed ID: 25058933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life-cycle assessment of microalgae culture coupled to biogas production.
    Collet P; Hélias A; Lardon L; Ras M; Goy RA; Steyer JP
    Bioresour Technol; 2011 Jan; 102(1):207-14. PubMed ID: 20674343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus.
    Wang H; Gao L; Chen L; Guo F; Liu T
    Bioresour Technol; 2013 Aug; 142():39-44. PubMed ID: 23735788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance.
    Yang J; Xu M; Zhang X; Hu Q; Sommerfeld M; Chen Y
    Bioresour Technol; 2011 Jan; 102(1):159-65. PubMed ID: 20675125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.
    Sharif N; Munir N; Saleem F; Aslam F; Naz S
    Nat Prod Res; 2015; 29(20):1938-41. PubMed ID: 25675371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration.
    Chowdhury R; Viamajala S; Gerlach R
    Bioresour Technol; 2012 Mar; 108():102-11. PubMed ID: 22264431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions.
    Kiran Kumar P; Vijaya Krishna S; Verma K; Pooja K; Bhagawan D; Srilatha K; Himabindu V
    J Microbiol Methods; 2018 Oct; 153():108-117. PubMed ID: 30248442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concurrent extraction and reaction for the production of biodiesel from wet microalgae.
    Im H; Lee H; Park MS; Yang JW; Lee JW
    Bioresour Technol; 2014; 152():534-7. PubMed ID: 24291292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions.
    Zhou D; Qiao B; Li G; Xue S; Yin J
    Bioresour Technol; 2017 Aug; 238():609-615. PubMed ID: 28482287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction.
    Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Algae as green energy reserve: Technological outlook on biofuel production.
    Anto S; Mukherjee SS; Muthappa R; Mathimani T; Deviram G; Kumar SS; Verma TN; Pugazhendhi A
    Chemosphere; 2020 Mar; 242():125079. PubMed ID: 31678847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An efficient and scalable extraction and quantification method for algal derived biofuel.
    Lohman EJ; Gardner RD; Halverson L; Macur RE; Peyton BM; Gerlach R
    J Microbiol Methods; 2013 Sep; 94(3):235-44. PubMed ID: 23810969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.