These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 26000344)

  • 1. Label-free monitoring of plasmonic catalysis on the nanoscale.
    Zhang Z; Deckert-Gaudig T; Deckert V
    Analyst; 2015 Jul; 140(13):4325-35. PubMed ID: 26000344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy.
    Liu Y; Zhao Y; Zhang L; Yan Y; Jiang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():539-546. PubMed ID: 31078821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon induced polymerization using a TERS approach: a platform for nanostructured 2D/1D material production.
    Zhang Z; Richard-Lacroix M; Deckert V
    Faraday Discuss; 2017 Dec; 205():213-226. PubMed ID: 28914312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions.
    Zhang Z; Fang Y; Wang W; Chen L; Sun M
    Adv Sci (Weinh); 2016 Jan; 3(1):1500215. PubMed ID: 27774380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental correlation of electric fields and Raman signals in SERS and TERS.
    Schultz ZD; Wang H; Kwasnieski DT; Marr JM
    Proc SPIE Int Soc Opt Eng; 2015 Aug; 9554():. PubMed ID: 26412927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zrimsek AB; Chiang N; Mattei M; Zaleski S; McAnally MO; Chapman CT; Henry AI; Schatz GC; Van Duyne RP
    Chem Rev; 2017 Jun; 117(11):7583-7613. PubMed ID: 28610424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-Driven Chemistry on Mono- and Bimetallic Nanostructures.
    Li Z; Kurouski D
    Acc Chem Res; 2021 May; 54(10):2477-2487. PubMed ID: 33908773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures.
    Xie W; Walkenfort B; Schlücker S
    J Am Chem Soc; 2013 Feb; 135(5):1657-60. PubMed ID: 23186150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanogap structures: combining enhanced Raman spectroscopy and electronic transport.
    Natelson D; Li Y; Herzog JB
    Phys Chem Chem Phys; 2013 Apr; 15(15):5262-75. PubMed ID: 23385304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.
    Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH
    Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique Electronic Excitations at Highly Localized Plasmonic Field.
    Minamimoto H; Zhou R; Fukushima T; Murakoshi K
    Acc Chem Res; 2022 Mar; 55(6):809-818. PubMed ID: 35184549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis.
    Hartman T; Wondergem CS; Kumar N; van den Berg A; Weckhuysen BM
    J Phys Chem Lett; 2016 Apr; 7(8):1570-84. PubMed ID: 27075515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy].
    Wu XB; Wang J; Wang R; Xu JY; Tian Q; Yu JY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2681-5. PubMed ID: 20038037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and computational methods for tip- and surface-enhanced Raman scattering.
    Duan S; Tian G; Luo Y
    Chem Soc Rev; 2024 May; 53(10):5083-5117. PubMed ID: 38596836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling the relationship between Raman enhancement and photocatalytic activity on single anisotropic Au microplates.
    Sun Y; Liu H; Zhou F; Yang L; He S; Sun B; Liu J
    Chemistry; 2014 Aug; 20(33):10414-24. PubMed ID: 25042618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.