These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26000567)

  • 1. Geometric pumping in autophoretic channels.
    Michelin S; Montenegro-Johnson TD; De Canio G; Lobato-Dauzier N; Lauga E
    Soft Matter; 2015 Aug; 11(29):5804-11. PubMed ID: 26000567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The apparent hydrodynamic slip of polymer solutions and its implications in electrokinetics.
    Berli CL
    Electrophoresis; 2013 Mar; 34(5):622-30. PubMed ID: 23254943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.
    Liu X; Abbott NL
    Anal Chem; 2011 Apr; 83(8):3033-41. PubMed ID: 21446653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles.
    Simelane SM; Abelman S; Duncan FD
    Acta Biotheor; 2017 Sep; 65(3):211-231. PubMed ID: 28695410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structuring bubbles and foams in gelatine solutions within a circular microchannel device.
    Skurtys O; Aguilera JM
    J Colloid Interface Sci; 2008 Feb; 318(2):380-8. PubMed ID: 17991482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-friction flows of liquid at nanopatterned interfaces.
    Cottin-Bizonne C; Barrat JL; Bocquet L; Charlaix E
    Nat Mater; 2003 Apr; 2(4):237-40. PubMed ID: 12690396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusive spreading of time-dependent pressures in elastic microfluidic devices.
    Wunderlich BK; Klessinger UA; Bausch AR
    Lab Chip; 2010 Apr; 10(8):1025-9. PubMed ID: 20358110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-osmotic flows in a microchannel with patterned hydrodynamic slip walls.
    Zhao C; Yang C
    Electrophoresis; 2012 Mar; 33(6):899-980. PubMed ID: 22528409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling electroosmotic and pressure-driven flows in porous microfluidic devices: zeta potential and porosity changes near the channel walls.
    Scales N; Tait RN
    J Chem Phys; 2006 Sep; 125(9):094714. PubMed ID: 16965112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation.
    Zhu X; Yi Chu L; Chueh BH; Shen M; Hazarika B; Phadke N; Takayama S
    Analyst; 2004 Nov; 129(11):1026-31. PubMed ID: 15508030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices.
    Resto PJ; Berthier E; Beebe DJ; Williams JC
    Lab Chip; 2012 Jun; 12(12):2221-8. PubMed ID: 22441561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigation of the solute dispersion in finite-length microchannels with the interphase transport.
    Li W; Zhang W; Qian F; Huang D; Wang Q; Zhao C
    Electrophoresis; 2021 Feb; 42(3):257-268. PubMed ID: 33111983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Submicron flow of polymer solutions: slippage reduction due to confinement.
    Cuenca A; Bodiguel H
    Phys Rev Lett; 2013 Mar; 110(10):108304. PubMed ID: 23521309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic device for performing pressure-driven separations.
    Dutta D; Ramsey JM
    Lab Chip; 2011 Sep; 11(18):3081-8. PubMed ID: 21789335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive regulation of volume-flow ratio for microfluidic streams with different hydrophilicity and viscosity.
    Kim SJ; Lim YT; Yang H; Kim K; Kim YT
    Electrophoresis; 2010 Jan; 31(4):709-13. PubMed ID: 20094991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.
    Xuan X; Li D
    J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels [corrected].
    Jendrejack RM; Schwartz DC; de Pablo JJ; Graham MD
    J Chem Phys; 2004 Feb; 120(5):2513-29. PubMed ID: 15268395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of the flow-induced deformation of shallow compliant microchannels with thick walls.
    Wang X; Christov IC
    Proc Math Phys Eng Sci; 2019 Nov; 475(2231):20190513. PubMed ID: 31824223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of rough surface topography on gas slip flow in microchannels.
    Zhang C; Chen Y; Deng Z; Shi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016319. PubMed ID: 23005537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator.
    Xue X; Patel MK; Kersaudy-Kerhoas M; Bailey C; Desmulliez MP
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):549-60. PubMed ID: 21331958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.