These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26000720)

  • 1. Tailoring Nanoscale Friction in MX2 Transition Metal Dichalcogenides.
    Cammarata A; Polcar T
    Inorg Chem; 2015 Jun; 54(12):5739-44. PubMed ID: 26000720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layering effects on low frequency modes in n-layered MX2 transition metal dichalcogenides.
    Cammarata A; Polcar T
    Phys Chem Chem Phys; 2016 Feb; 18(6):4807-13. PubMed ID: 26806673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice distortion-enhanced superlubricity of (Mo, X)S
    Li P; Lu J; Wang WY; Sui X; Zou C; Zhang Y; Wang J; Lin D; Lu Z; Song H; Fan X; Hao J; Li J; Liu W
    Nanoscale; 2021 Oct; 13(38):16234-16243. PubMed ID: 34546276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear.
    Chhowalla M; Amaratunga GA
    Nature; 2000 Sep; 407(6801):164-7. PubMed ID: 11001049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic Thermal conductivities of monolayer transition metal dichalcogenides MX
    Zulfiqar M; Zhao Y; Li G; Li Z; Ni J
    Sci Rep; 2019 Mar; 9(1):4571. PubMed ID: 30872639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational contributions to intrinsic friction in charged transition metal dichalcogenides.
    Cammarata A; Polcar T
    Nanoscale; 2017 Aug; 9(32):11488-11497. PubMed ID: 28766677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-dependent Friction on Exfoliated Transition Metal Dichalcogenides Atomic Layers.
    Lee D; Jeong H; Lee H; Kim YH; Park JY
    Small; 2023 Nov; 19(47):e2302713. PubMed ID: 37485739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-Dependent Electronic Structure Changes in Transition Metal Dichalcogenides: The Microscopic Origin.
    Pandey SK; Das R; Mahadevan P
    ACS Omega; 2020 Jun; 5(25):15169-15176. PubMed ID: 32637790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twisted MX
    Lu N; Guo H; Zhuo Z; Wang L; Wu X; Zeng XC
    Nanoscale; 2017 Dec; 9(48):19131-19138. PubMed ID: 29184949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the electronic properties of monolayer and bilayer transition metal dichalcogenide compounds under direct out-of-plane compression.
    García ÁM; Corro ED; Kalbac M; Frank O
    Phys Chem Chem Phys; 2017 May; 19(20):13333-13340. PubMed ID: 28492694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition.
    Ma F; Gao G; Jiao Y; Gu Y; Bilic A; Zhang H; Chen Z; Du A
    Nanoscale; 2016 Mar; 8(9):4969-75. PubMed ID: 26620395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Friction Behavior of Transition-Metal Dichalcogenides: Role of the Chalcogenide.
    Vazirisereshk MR; Hasz K; Zhao MQ; Johnson ATC; Carpick RW; Martini A
    ACS Nano; 2020 Nov; 14(11):16013-16021. PubMed ID: 33090766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides.
    Miró P; Ghorbani-Asl M; Heine T
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):3015-8. PubMed ID: 24554594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Coherence Facilitates Efficient Charge Separation at a MoS2/MoSe2 van der Waals Junction.
    Long R; Prezhdo OV
    Nano Lett; 2016 Mar; 16(3):1996-2003. PubMed ID: 26882202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D hetero-structures based on transition metal dichalcogenides: fabrication, properties and applications.
    Liu P; Xiang B
    Sci Bull (Beijing); 2017 Aug; 62(16):1148-1161. PubMed ID: 36659346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural, elastic, and vibrational properties of layered titanium dichalcogenides: a van der Waals density functional study.
    Ding H; Xu B
    J Chem Phys; 2012 Dec; 137(22):224509. PubMed ID: 23249019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic Interlayer Force Field for Group-VI Transition Metal Dichalcogenides.
    Jiang W; Sofer R; Gao X; Tkatchenko A; Kronik L; Ouyang W; Urbakh M; Hod O
    J Phys Chem A; 2023 Nov; 127(46):9820-9830. PubMed ID: 37938019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.