These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26000847)

  • 1. Designing Cell-Type-Specific Genome-wide Experiments.
    Handley A; Schauer T; Ladurner AG; Margulies CE
    Mol Cell; 2015 May; 58(4):621-31. PubMed ID: 26000847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-specific expression profiling of rare cell types as exemplified by its impact on our understanding of female gametophyte development.
    Wuest SE; Schmid MW; Grossniklaus U
    Curr Opin Plant Biol; 2013 Feb; 16(1):41-9. PubMed ID: 23276786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single cell sequencing approaches for complex biological systems.
    Baslan T; Hicks J
    Curr Opin Genet Dev; 2014 Jun; 26():59-65. PubMed ID: 25016438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin.
    Achim K; Pettit JB; Saraiva LR; Gavriouchkina D; Larsson T; Arendt D; Marioni JC
    Nat Biotechnol; 2015 May; 33(5):503-9. PubMed ID: 25867922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The technology and biology of single-cell RNA sequencing.
    Kolodziejczyk AA; Kim JK; Svensson V; Marioni JC; Teichmann SA
    Mol Cell; 2015 May; 58(4):610-20. PubMed ID: 26000846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell genome and transcriptome processing prior to high-throughput sequencing.
    Aransay AM; Barcena L; Gonzalez-Lahera A; Macias-Camara N
    Methods Mol Biol; 2015; 1293():83-114. PubMed ID: 26040683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell cDNA microarray profiling of complex biological processes of differentiation.
    Kurimoto K; Saitou M
    Curr Opin Genet Dev; 2010 Oct; 20(5):470-7. PubMed ID: 20619631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell sequencing technologies: current and future.
    Liang J; Cai W; Sun Z
    J Genet Genomics; 2014 Oct; 41(10):513-28. PubMed ID: 25438696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial.
    Wolf JB
    Mol Ecol Resour; 2013 Jul; 13(4):559-72. PubMed ID: 23621713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm.
    Hou Y; Song L; Zhu P; Zhang B; Tao Y; Xu X; Li F; Wu K; Liang J; Shao D; Wu H; Ye X; Ye C; Wu R; Jian M; Chen Y; Xie W; Zhang R; Chen L; Liu X; Yao X; Zheng H; Yu C; Li Q; Gong Z; Mao M; Yang X; Yang L; Li J; Wang W; Lu Z; Gu N; Laurie G; Bolund L; Kristiansen K; Wang J; Yang H; Li Y; Zhang X; Wang J
    Cell; 2012 Mar; 148(5):873-85. PubMed ID: 22385957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-generation sequencing of miRNAs with Roche 454 GS-FLX technology: steps for a successful application.
    Soares AR; Pereira PM; Santos MA
    Methods Mol Biol; 2012; 822():189-204. PubMed ID: 22144200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The added value of single-cell gene expression profiling.
    Ståhlberg A; Rusnakova V; Kubista M
    Brief Funct Genomics; 2013 Mar; 12(2):81-9. PubMed ID: 23393397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomics on small samples.
    Roy SJ; Conn SJ; Mayo GM; Athman A; Gilliham M
    Methods Mol Biol; 2012; 913():335-50. PubMed ID: 22895770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of single-cell trajectory inference methods.
    Saelens W; Cannoodt R; Todorov H; Saeys Y
    Nat Biotechnol; 2019 May; 37(5):547-554. PubMed ID: 30936559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new workflow for whole-genome sequencing of single human cells.
    Binder V; Bartenhagen C; Okpanyi V; Gombert M; Moehlendick B; Behrens B; Klein HU; Rieder H; Ida Krell PF; Dugas M; Stoecklein NH; Borkhardt A
    Hum Mutat; 2014 Oct; 35(10):1260-70. PubMed ID: 25066732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Placing RNA in context and space - methods for spatially resolved transcriptomics.
    Strell C; Hilscher MM; Laxman N; Svedlund J; Wu C; Yokota C; Nilsson M
    FEBS J; 2019 Apr; 286(8):1468-1481. PubMed ID: 29542254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From whole-mount to single-cell spatial assessment of gene expression in 3D.
    Waylen LN; Nim HT; Martelotto LG; Ramialison M
    Commun Biol; 2020 Oct; 3(1):602. PubMed ID: 33097816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding development and stem cells using single cell-based analyses of gene expression.
    Kumar P; Tan Y; Cahan P
    Development; 2017 Jan; 144(1):17-32. PubMed ID: 28049689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the transcriptome space of a recombinant BHK cell line through next generation sequencing.
    Johnson KC; Yongky A; Vishwanathan N; Jacob NM; Jayapal KP; Goudar CT; Karypis G; Hu WS
    Biotechnol Bioeng; 2014 Apr; 111(4):770-81. PubMed ID: 24249083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput gene expression profiling of opioid-induced alterations in discrete brain areas.
    Korostynski M; Piechota M; Golda S; Przewlocki R
    Methods Mol Biol; 2015; 1230():65-76. PubMed ID: 25293316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.