These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 26000891)
1. Low-Cost Copper Nanostructures Impart High Efficiencies to Quantum Dot Solar Cells. Kumar PN; Deepa M; Ghosal P ACS Appl Mater Interfaces; 2015 Jun; 7(24):13303-13. PubMed ID: 26000891 [TBL] [Abstract][Full Text] [Related]
2. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell. Kumar PN; Deepa M; Srivastava AK Phys Chem Chem Phys; 2015 Apr; 17(15):10040-52. PubMed ID: 25785507 [TBL] [Abstract][Full Text] [Related]
3. Lead-Sulfide-Selenide Quantum Dots and Gold-Copper Alloy Nanoparticles Augment the Light-Harvesting Ability of Solar Cells. Das A; Deepa M; Ghosal P Chemphyschem; 2017 Apr; 18(7):736-748. PubMed ID: 28070927 [TBL] [Abstract][Full Text] [Related]
4. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363 [TBL] [Abstract][Full Text] [Related]
5. Efficiency Enhancement of Quantum Dot Sensitized TiO Zhao H; Huang F; Hou J; Liu Z; Wu Q; Cao H; Jing Q; Peng S; Cao G ACS Appl Mater Interfaces; 2016 Oct; 8(40):26675-26682. PubMed ID: 27648815 [TBL] [Abstract][Full Text] [Related]
6. CuS/CdS Quantum Dot Composite Sensitizer and Its Applications to Various TiO2 Mesoporous Film-Based Solar Cell Devices. Kim M; Ochirbat A; Lee HJ Langmuir; 2015 Jul; 31(27):7609-15. PubMed ID: 26086801 [TBL] [Abstract][Full Text] [Related]
7. The effect of TiO2 nanoflowers as a compact layer for CdS quantum-dot sensitized solar cells with improved performance. Rao SS; Durga IK; Gopi CV; Venkata Tulasivarma C; Kim SK; Kim HJ Dalton Trans; 2015 Jul; 44(28):12852-62. PubMed ID: 26102365 [TBL] [Abstract][Full Text] [Related]
8. Solar cells with PbS quantum dot sensitized TiO Kokal RK; Deepa M; Kalluri A; Singh S; Macwan I; Patra PK; Gilarde J Phys Chem Chem Phys; 2017 Oct; 19(38):26330-26345. PubMed ID: 28936513 [TBL] [Abstract][Full Text] [Related]
9. Double-Sided Transparent TiO Chen C; Ling L; Li F Nanoscale Res Lett; 2017 Dec; 12(1):4. PubMed ID: 28054330 [TBL] [Abstract][Full Text] [Related]
10. Counter Electrode Impact on Quantum Dot Solar Cell Efficiencies. Kumar PN; Kolay A; Kumar SK; Patra P; Aphale A; Srivastava AK; Deepa M ACS Appl Mater Interfaces; 2016 Oct; 8(41):27688-27700. PubMed ID: 27700023 [TBL] [Abstract][Full Text] [Related]
11. New Antimony Selenide/Nickel Oxide Photocathode Boosts the Efficiency of Graphene Quantum-Dot Co-Sensitized Solar Cells. Kolay A; Kokal RK; Kalluri A; Macwan I; Patra PK; Ghosal P; Deepa M ACS Appl Mater Interfaces; 2017 Oct; 9(40):34915-34926. PubMed ID: 28921953 [TBL] [Abstract][Full Text] [Related]
12. Stability, Scale-up, and Performance of Quantum Dot Solar Cells with Carbonate-Treated Titanium Oxide Films. Kumar PN; Kolay A; Deepa M; Shivaprasad SM; Srivastava AK ACS Appl Mater Interfaces; 2017 Aug; 9(30):25278-25290. PubMed ID: 28692805 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe). Yang L; McCue C; Zhang Q; Uchaker E; Mai Y; Cao G Nanoscale; 2015 Feb; 7(7):3173-80. PubMed ID: 25615827 [TBL] [Abstract][Full Text] [Related]
14. CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance. Santra PK; Nair PV; George Thomas K; Kamat PV J Phys Chem Lett; 2013 Mar; 4(5):722-9. PubMed ID: 26281925 [TBL] [Abstract][Full Text] [Related]
15. Improved conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube array using ZnO energy barrier layer. Chen C; Xie Y; Ali G; Yoo SH; Cho SO Nanotechnology; 2011 Jan; 22(1):015202. PubMed ID: 21135453 [TBL] [Abstract][Full Text] [Related]
16. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots. Muthalif MPA; Sunesh CD; Choe Y J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116 [TBL] [Abstract][Full Text] [Related]
17. Titanium oxide morphology controls charge collection efficiency in quantum dot solar cells. Kolay A; Kumar PN; Kumar SK; Deepa M Phys Chem Chem Phys; 2017 Feb; 19(6):4607-4617. PubMed ID: 28124689 [TBL] [Abstract][Full Text] [Related]
18. Photocatalytic Synthesis of CdS(core)-CdSe(shell) Quantum Dots with a Heteroepitaxial Junction on TiO Kitazono K; Akashi R; Fujiwara K; Akita A; Naya SI; Fujishima M; Tada H Chemphyschem; 2017 Oct; 18(20):2840-2845. PubMed ID: 28833927 [TBL] [Abstract][Full Text] [Related]
19. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. Du J; Du Z; Hu JS; Pan Z; Shen Q; Sun J; Long D; Dong H; Sun L; Zhong X; Wan LJ J Am Chem Soc; 2016 Mar; 138(12):4201-9. PubMed ID: 26962680 [TBL] [Abstract][Full Text] [Related]
20. Quantum Dot Donor-Polymer Acceptor Architecture for a FRET-Enabled Solar Cell. Kokal RK; Raavi SSK; Deepa M ACS Appl Mater Interfaces; 2019 May; 11(20):18395-18403. PubMed ID: 31045337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]