These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26001019)

  • 1. Margination regimes and drainage transition in confined multicomponent suspensions.
    Henríquez Rivera RG; Sinha K; Graham MD
    Phys Rev Lett; 2015 May; 114(18):188101. PubMed ID: 26001019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of margination in confined flows of blood and other multicomponent suspensions.
    Kumar A; Graham MD
    Phys Rev Lett; 2012 Sep; 109(10):108102. PubMed ID: 23005332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layering instability in a confined suspension flow.
    Zurita-Gotor M; Bławzdziewicz J; Wajnryb E
    Phys Rev Lett; 2012 Feb; 108(6):068301. PubMed ID: 22401126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of the solid and liquid phases in dilute sheared Brownian suspensions: irreversibility and particle migration.
    Brown JR; Seymour JD; Codd SL; Fridjonsson EO; Cokelet GR; Nydén M
    Phys Rev Lett; 2007 Dec; 99(24):240602. PubMed ID: 18233432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles.
    Lefauve A; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):021002. PubMed ID: 25353410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood Crystal: Emergent Order of Red Blood Cells Under Wall-Confined Shear Flow.
    Shen Z; Fischer TM; Farutin A; Vlahovska PM; Harting J; Misbah C
    Phys Rev Lett; 2018 Jun; 120(26):268102. PubMed ID: 30004752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-mediated margination and demargination in flowing multicomponent suspensions of deformable capsules.
    Sinha K; Graham MD
    Soft Matter; 2016 Feb; 12(6):1683-700. PubMed ID: 26679746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear-induced platelet margination in a microchannel.
    Zhao H; Shaqfeh ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061924. PubMed ID: 21797420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase segregation through transient network formation in a binary particle suspension in simple shear: application to dough.
    van Opheusden JH; Molenaar J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042305. PubMed ID: 24827249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow.
    Ye H; Shen Z; Li Y
    Soft Matter; 2018 Sep; 14(36):7401-7419. PubMed ID: 30187053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segregation by membrane rigidity in flowing binary suspensions of elastic capsules.
    Kumar A; Graham MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066316. PubMed ID: 22304199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. White blood cell margination in microcirculation.
    Fedosov DA; Gompper G
    Soft Matter; 2014 May; 10(17):2961-70. PubMed ID: 24695813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lift and down-gradient shear-induced diffusion in red blood cell suspensions.
    Grandchamp X; Coupier G; Srivastav A; Minetti C; Podgorski T
    Phys Rev Lett; 2013 Mar; 110(10):108101. PubMed ID: 23521300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-to-solid transition of concentrated suspensions under complex transient shear histories.
    Guo Y; Yu W; Xu Y; Zhou C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061404. PubMed ID: 20365172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segregation by size difference in binary suspensions of fluid droplets in channel flow.
    Makino M; Sugihara-Seki M
    Biorheology; 2013; 50(3-4):149-63. PubMed ID: 23863280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Tracking of Particles and Quantification of Margination in Blood Flow.
    Carboni EJ; Bognet BH; Bouchillon GM; Kadilak AL; Shor LM; Ward MD; Ma AWK
    Biophys J; 2016 Oct; 111(7):1487-1495. PubMed ID: 27705771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.
    Furukawa A; Marenduzzo D; Cates ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022303. PubMed ID: 25215734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brownian dynamics without Green's functions.
    Delong S; Usabiaga FB; Delgado-Buscalioni R; Griffith BE; Donev A
    J Chem Phys; 2014 Apr; 140(13):134110. PubMed ID: 24712783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordering transition of non-Brownian suspensions in confined steady shear flow.
    Yeo K; Maxey MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051502. PubMed ID: 20866230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.