These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26001019)

  • 21. Aspect ratio and polydispersity dependence of isotropic-nematic transition in discotic suspensions.
    Mejia AF; Chang YW; Ng R; Shuai M; Mannan MS; Cheng Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061708. PubMed ID: 23005115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions.
    Xu B; Gilchrist JF
    J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of a compound vesicle in shear flow.
    Veerapaneni SK; Young YN; Vlahovska PM; Bławzdziewicz J
    Phys Rev Lett; 2011 Apr; 106(15):158103. PubMed ID: 21568618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic wave propagation in concentrated slurries--the modelling problem.
    Challis RE; Pinfield VJ
    Ultrasonics; 2014 Sep; 54(7):1737-44. PubMed ID: 24784462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effective interactions in active Brownian suspensions.
    Farage TF; Krinninger P; Brader JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042310. PubMed ID: 25974494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations.
    Saintillan D; Shelley MJ
    Phys Rev Lett; 2008 May; 100(17):178103. PubMed ID: 18518342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Factors affecting the rheology and processability of highly filled suspensions.
    Kalyon DM; Aktaş S
    Annu Rev Chem Biomol Eng; 2014; 5():229-54. PubMed ID: 24910916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short-time self-diffusion coefficient of a particle in a colloidal suspension bounded by a microchannel: virial expansions and simulation.
    Kędzierski M; Wajnryb E
    J Chem Phys; 2011 Oct; 135(16):164104. PubMed ID: 22047225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surviving structure in colloidal suspensions squeezed from 3D to 2D.
    Klapp SH; Zeng Y; Qu D; von Klitzing R
    Phys Rev Lett; 2008 Mar; 100(11):118303. PubMed ID: 18517836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rheology of non-Brownian suspensions.
    Denn MM; Morris JF
    Annu Rev Chem Biomol Eng; 2014; 5():203-28. PubMed ID: 24655134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions.
    Philippe AM; Baravian C; Imperor-Clerc M; De Silva J; Paineau E; Bihannic I; Davidson P; Meneau F; Levitz P; Michot LJ
    J Phys Condens Matter; 2011 May; 23(19):194112. PubMed ID: 21525562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrodynamic suppression of phase separation in active suspensions.
    Matas-Navarro R; Golestanian R; Liverpool TB; Fielding SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032304. PubMed ID: 25314443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viscosity calculation of a nanoparticle suspension confined in nanochannels.
    Wang Y; Keblinski P; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036313. PubMed ID: 23031019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of a disordered solid via a shock-induced transition in a dense particle suspension.
    Petel OE; Frost DL; Higgins AJ; Ouellet S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021401. PubMed ID: 22463206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and dynamics of soft repulsive colloidal suspensions in the vicinity of the glass transition.
    Crassous JJ; Casal-Dujat L; Medebach M; Obiols-Rabasa M; Vincent R; Reinhold F; Boyko V; Willerich I; Menzel A; Moitzi C; Reck B; Schurtenberger P
    Langmuir; 2013 Aug; 29(33):10346-59. PubMed ID: 23875751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic fracture of nonglassy suspensions.
    Roché M; Myftiu E; Johnston MC; Kim P; Stone HA
    Phys Rev Lett; 2013 Apr; 110(14):148304. PubMed ID: 25167046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strongly Accelerated Margination of Active Particles in Blood Flow.
    Gekle S
    Biophys J; 2016 Jan; 110(2):514-520. PubMed ID: 26789773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental verification of morphological instability in freezing aqueous colloidal suspensions.
    Peppin SS; Wettlaufer JS; Worster MG
    Phys Rev Lett; 2008 Jun; 100(23):238301. PubMed ID: 18643549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Field-flow fractionation and hydrodynamic chromatography on a microfluidic chip.
    Shendruk TN; Tahvildari R; Catafard NM; Andrzejewski L; Gigault C; Todd A; Gagne-Dumais L; Slater GW; Godin M
    Anal Chem; 2013 Jun; 85(12):5981-8. PubMed ID: 23650976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An effective and efficient model of the near-field hydrodynamic interactions for active suspensions of bacteria.
    Zhang B; Leishangthem P; Ding Y; Xu X
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34260387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.