These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Environmental and economic evaluation of bioenergy in Ontario, Canada. Zhang Y; Habibi S; MacLean HL J Air Waste Manag Assoc; 2007 Aug; 57(8):919-33. PubMed ID: 17824282 [TBL] [Abstract][Full Text] [Related]
3. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States cellulosic biofuels. Scown CD; Gokhale AA; Willems PA; Horvath A; McKone TE Environ Sci Technol; 2014; 48(15):8446-55. PubMed ID: 24988448 [TBL] [Abstract][Full Text] [Related]
4. Life Cycle Greenhouse Gas Impacts of Coal and Imported Gas-Based Power Generation in the Indian Context. Mallapragada DS; Naik I; Ganesan K; Banerjee R; Laurenzi IJ Environ Sci Technol; 2019 Jan; 53(1):539-549. PubMed ID: 30495942 [TBL] [Abstract][Full Text] [Related]
5. National-level infrastructure and economic effects of switchgrass cofiring with coal in existing power plants for carbon mitigation. Morrow WR; Griffin WM; Matthews HS Environ Sci Technol; 2008 May; 42(10):3501-7. PubMed ID: 18546680 [TBL] [Abstract][Full Text] [Related]
6. Co-combustion of agricultural residues with coal in a fluidized bed combustor. Ghani WA; Alias AB; Savory RM; Cliffe KR Waste Manag; 2009 Feb; 29(2):767-73. PubMed ID: 18614348 [TBL] [Abstract][Full Text] [Related]
7. Performance analysis of biomass gasification coupled with a coal-fired boiler system at various loads. Zhang X; Li K; Zhang C; Wang A Waste Manag; 2020 Mar; 105():84-91. PubMed ID: 32035330 [TBL] [Abstract][Full Text] [Related]
8. Assessment of potential carbon dioxide reductions due to biomass-coal cofiring in the United States. Robinson AL; Rhodes JS; Keith DW Environ Sci Technol; 2003 Nov; 37(22):5081-9. PubMed ID: 14655692 [TBL] [Abstract][Full Text] [Related]
9. Water use at pulverized coal power plants with postcombustion carbon capture and storage. Zhai H; Rubin ES; Versteeg PL Environ Sci Technol; 2011 Mar; 45(6):2479-85. PubMed ID: 21329343 [TBL] [Abstract][Full Text] [Related]
10. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants. Supekar SD; Skerlos SJ Environ Sci Technol; 2015 Oct; 49(20):12576-84. PubMed ID: 26422409 [TBL] [Abstract][Full Text] [Related]
11. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration. Dang Q; Mba Wright M; Brown RC Environ Sci Technol; 2015 Dec; 49(24):14688-95. PubMed ID: 26545153 [TBL] [Abstract][Full Text] [Related]
12. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor. Cao Y; Zhou H; Fan J; Zhao H; Zhou T; Hack P; Chan CC; Liou JC; Pan WP Environ Sci Technol; 2008 Dec; 42(24):9378-84. PubMed ID: 19174919 [TBL] [Abstract][Full Text] [Related]
13. Comparing the greenhouse gas emissions from three alternative waste combustion concepts. Vainikka P; Tsupari E; Sipilä K; Hupa M Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250 [TBL] [Abstract][Full Text] [Related]
14. Construction of a regional inventory to characterize polycyclic aromatic hydrocarbon emissions from coal-fired power plants in Anhui, China from 2010 to 2030. Wang R; Cai J; Cai F; Xia L; Sun X; Zeng EY Environ Pollut; 2021 Mar; 272():115972. PubMed ID: 33187847 [TBL] [Abstract][Full Text] [Related]
15. Current Emissions and Future Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030. Tong D; Zhang Q; Liu F; Geng G; Zheng Y; Xue T; Hong C; Wu R; Qin Y; Zhao H; Yan L; He K Environ Sci Technol; 2018 Nov; 52(21):12905-12914. PubMed ID: 30249091 [TBL] [Abstract][Full Text] [Related]
16. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations. Hu Y; Cheng H Environ Pollut; 2016 Nov; 218():1209-1221. PubMed ID: 27596303 [TBL] [Abstract][Full Text] [Related]
17. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass. Xie X; Wang M; Han J Environ Sci Technol; 2011 Apr; 45(7):3047-53. PubMed ID: 21370852 [TBL] [Abstract][Full Text] [Related]
18. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China. Xue Y; Tian H; Yan J; Zhou Z; Wang J; Nie L; Pan T; Zhou J; Hua S; Wang Y; Wu X Environ Pollut; 2016 Jun; 213():717-726. PubMed ID: 27023281 [TBL] [Abstract][Full Text] [Related]
19. Behavior of fluorine and chlorine in Spanish coal fired power plants with pulverized coal boilers and fluidized bed boiler. López-Vilariño JM; Fernández-Martínez G; Turnes-Carou I; Muinategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D Environ Technol; 2003 Jun; 24(6):687-92. PubMed ID: 12868523 [TBL] [Abstract][Full Text] [Related]
20. Fine-Scale Analysis of the Energy-Land-Water Nexus: Nitrate Leaching Implications of Biomass Cofiring in the Midwestern United States. Sun S; Ordonez BV; Webster MD; Liu J; Kucharik CJ; Hertel T Environ Sci Technol; 2020 Feb; 54(4):2122-2132. PubMed ID: 31944680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]