These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569 [TBL] [Abstract][Full Text] [Related]
7. Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior. Yan J; Qiang L; Gao Y; Cui X; Zhou H; Zhong S; Wang Q; Wang H J Biomed Mater Res A; 2012 Feb; 100(2):527-35. PubMed ID: 22140085 [TBL] [Abstract][Full Text] [Related]
8. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers. Jia L; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2014 Sep; 29(3):364-77. PubMed ID: 24682037 [TBL] [Abstract][Full Text] [Related]
9. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture. Ye L; Cao J; Chen L; Geng X; Zhang AY; Guo LR; Gu YQ; Feng ZG J Biomed Mater Res A; 2015 Dec; 103(12):3863-71. PubMed ID: 26123627 [TBL] [Abstract][Full Text] [Related]
10. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581 [TBL] [Abstract][Full Text] [Related]
11. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds. Bettahalli NM; Arkesteijn IT; Wessling M; Poot AA; Stamatialis D Acta Biomater; 2013 Jun; 9(6):6928-35. PubMed ID: 23485858 [TBL] [Abstract][Full Text] [Related]
12. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Xu CY; Inai R; Kotaki M; Ramakrishna S Biomaterials; 2004 Feb; 25(5):877-86. PubMed ID: 14609676 [TBL] [Abstract][Full Text] [Related]
13. Circumferentially aligned fibers guided functional neoartery regeneration in vivo. Zhu M; Wang Z; Zhang J; Wang L; Yang X; Chen J; Fan G; Ji S; Xing C; Wang K; Zhao Q; Zhu Y; Kong D; Wang L Biomaterials; 2015 Aug; 61():85-94. PubMed ID: 26001073 [TBL] [Abstract][Full Text] [Related]
14. Melt-spun shaped fibers with enhanced surface effects: fiber fabrication, characterization and application to woven scaffolds. Park SJ; Lee BK; Na MH; Kim DS Acta Biomater; 2013 Aug; 9(8):7719-26. PubMed ID: 23669620 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Subramanian A; Krishnan UM; Sethuraman S Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055 [TBL] [Abstract][Full Text] [Related]
16. Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. Huang C; Ouyang Y; Niu H; He N; Ke Q; Jin X; Li D; Fang J; Liu W; Fan C; Lin T ACS Appl Mater Interfaces; 2015 Apr; 7(13):7189-96. PubMed ID: 25786058 [TBL] [Abstract][Full Text] [Related]
17. Construction of cell-containing, anisotropic, three-dimensional collagen fibril scaffolds using external vibration and their influence on smooth muscle cell phenotype modulation. Zeng YN; Kang YL; Rau LR; Hsu FY; Tsai SW Biomed Mater; 2017 Aug; 12(4):045019. PubMed ID: 28569670 [TBL] [Abstract][Full Text] [Related]