These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Numerical study of acoustophoretic manipulation of particles in microfluidic channels. Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594 [TBL] [Abstract][Full Text] [Related]
9. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Sachs S; Baloochi M; Cierpka C; König J Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. Liu X; Zheng T; Wang C Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304 [TBL] [Abstract][Full Text] [Related]
11. The effect of microchannel height on the acoustophoretic motion of sub-micron particles. Lai TW; Tennakoon T; Chan KC; Liu CH; Chao CYH; Fu SC Ultrasonics; 2024 Jan; 136():107126. PubMed ID: 37553269 [TBL] [Abstract][Full Text] [Related]
12. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels. Girardo S; Cecchini M; Beltram F; Cingolani R; Pisignano D Lab Chip; 2008 Sep; 8(9):1557-63. PubMed ID: 18818813 [TBL] [Abstract][Full Text] [Related]
13. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Collins DJ; Ma Z; Han J; Ai Y Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136 [TBL] [Abstract][Full Text] [Related]
14. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Muller PB; Rossi M; Marín AG; Barnkob R; Augustsson P; Laurell T; Kähler CJ; Bruus H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023006. PubMed ID: 24032923 [TBL] [Abstract][Full Text] [Related]
15. Submicron separation of microspheres via travelling surface acoustic waves. Destgeer G; Ha BH; Jung JH; Sung HJ Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065 [TBL] [Abstract][Full Text] [Related]
16. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves. Hsu JC; Chang CY Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473 [TBL] [Abstract][Full Text] [Related]
17. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation. Zhou Y Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071 [TBL] [Abstract][Full Text] [Related]
18. Radiation dominated acoustophoresis driven by surface acoustic waves. Guo J; Kang Y; Ai Y J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191 [TBL] [Abstract][Full Text] [Related]
19. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Barnkob R; Augustsson P; Laurell T; Bruus H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056307. PubMed ID: 23214876 [TBL] [Abstract][Full Text] [Related]
20. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices. Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]