These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26001441)

  • 41. Supersymmetric quantum mechanics, excited state energies and wave functions, and the Rayleigh-Ritz variational principle: a proof of principle study.
    Kouri DJ; Markovich T; Maxwell N; Bittner ER
    J Phys Chem A; 2009 Dec; 113(52):15257-64. PubMed ID: 19863127
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The "Fermi hole" and the correlation introduced by the symmetrization or the anti-symmetrization of the wave function.
    Giner E; Tenti L; Angeli C; Malrieu JP
    J Chem Phys; 2016 Sep; 145(12):124114. PubMed ID: 27782651
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Generalization of the Schrödinger Theory of Electrons.
    Sahni V
    J Comput Chem; 2018 Jul; 39(18):1083-1089. PubMed ID: 28766809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accurately solving the electronic Schrodinger equation of small atoms and molecules using explicitly correlated (r12-)MR-CI. VIII. Valence excited states of methylene (CH2).
    Flores JR; Gdanitz RJ
    J Chem Phys; 2005 Oct; 123(14):144316. PubMed ID: 16238400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures.
    Avila G; Carrington T
    J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method.
    Kurokawa YI; Nakashima H; Nakatsuji H
    Phys Chem Chem Phys; 2008 Aug; 10(30):4486-94. PubMed ID: 18654690
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions.
    Chen Z; Chen X; Wu W
    J Chem Phys; 2013 Apr; 138(16):164119. PubMed ID: 23635123
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Sigma(-) states of the molecular hydrogen.
    Komasa J
    Phys Chem Chem Phys; 2008 Jun; 10(23):3383-9. PubMed ID: 18535721
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Parallel solver for the time-dependent linear and nonlinear Schrödinger equation.
    Schneider BI; Collins LA; Hu SX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036708. PubMed ID: 16605699
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solving the electron and electron-nuclear Schrodinger equations for the excited states of helium atom with the free iterative-complement-interaction method.
    Nakashima H; Hijikata Y; Nakatsuji H
    J Chem Phys; 2008 Apr; 128(15):154108. PubMed ID: 18433191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A computationally efficient exact pseudopotential method. I. Analytic reformulation of the Phillips-Kleinman theory.
    Smallwood CJ; Larsen RE; Glover WJ; Schwartz BJ
    J Chem Phys; 2006 Aug; 125(7):074102. PubMed ID: 16942317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A multiconfigurational time-dependent Hartree-Fock method for excited electronic states. I. General formalism and application to open-shell states.
    Miranda RP; Fisher AJ; Stella L; Horsfield AP
    J Chem Phys; 2011 Jun; 134(24):244101. PubMed ID: 21721606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electronic spectrum of 17 electronic states of BN molecule: a theoretical study.
    Shi D; Xing W; Liu H; Sun J; Zhu Z; Liu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():367-78. PubMed ID: 22495220
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics.
    Valero R; Truhlar DG
    J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Convergence study of a Schrödinger-equation algorithm and structure-factor determination from the wavefunction.
    Bethanis K; Tzamalis P; Hountas A; Tsoucaris G
    Acta Crystallogr A; 2008 Jul; 64(Pt 4):450-8. PubMed ID: 18560161
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Registering the Amica electronic structure code in the extensible computational chemistry environment.
    Gdanitz RJ; Black GD; Lansing CS; Palmer BJ; Schuchardt KL
    J Comput Chem; 2005 Feb; 26(3):214-25. PubMed ID: 15599951
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A variational method for density functional theory calculations on metallic systems with thousands of atoms.
    Ruiz-Serrano Á; Skylaris CK
    J Chem Phys; 2013 Aug; 139(5):054107. PubMed ID: 23927243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.