These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26001476)

  • 1. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells.
    Zhang X; Yu S; Qiao L; Zheng W; Liu P
    J Chem Phys; 2015 May; 142(19):194710. PubMed ID: 26001476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of Pt near surface alloys under electrochemical conditions: a model study.
    Zhang X; Yu S; Zheng W; Liu P
    Phys Chem Chem Phys; 2014 Aug; 16(31):16615-22. PubMed ID: 24994557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium.
    Ramírez-Caballero GE; Ma Y; Callejas-Tovar R; Balbuena PB
    Phys Chem Chem Phys; 2010 Mar; 12(9):2209-18. PubMed ID: 20165770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Stability of Pt
    Zhang X; Gu T; Shi S; Li L; Yu S
    ACS Appl Mater Interfaces; 2018 May; 10(18):15704-15711. PubMed ID: 29667407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.
    Wang CH; Hsu HC; Wang KC
    J Colloid Interface Sci; 2014 Aug; 427():91-7. PubMed ID: 24388448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction.
    Shao MH; Huang T; Liu P; Zhang J; Sasaki K; Vukmirovic MB; Adzic RR
    Langmuir; 2006 Dec; 22(25):10409-15. PubMed ID: 17129009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory study of oxygen reduction reaction on Pt/Pd3Al(111) alloy electrocatalyst.
    Xiao BB; Jiang XB; Jiang Q
    Phys Chem Chem Phys; 2016 May; 18(21):14234-43. PubMed ID: 27167779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell catalysts consisting of nanoporous cores for oxygen reduction reaction.
    Shao M; Smith BH; Guerrero S; Protsailo L; Su D; Kaneko K; Odell JH; Humbert MP; Sasaki K; Marzullo J; Darling RM
    Phys Chem Chem Phys; 2013 Sep; 15(36):15078-90. PubMed ID: 23925477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness.
    Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y
    Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Pt-Based Core-Shell Electrocatalysts for Fuel Cell Cathodes.
    Zhao X; Sasaki K
    Acc Chem Res; 2022 May; 55(9):1226-1236. PubMed ID: 35451817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.
    Cochell T; Manthiram A
    Langmuir; 2012 Jan; 28(2):1579-87. PubMed ID: 22149212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to Boost the Activity of the Monolayer Pt Supported on TiC Catalysts for Oxygen Reduction Reaction: A Density Functional Theory Study.
    Zhu H; Liu H; Yang L; Xiao B
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31085995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring fuel cell cathode materials using ab initio high throughput calculations and validation using carbon supported Pt alloy catalysts.
    Sarwar M; Gavartin JL; Martinez Bonastre A; Garcia Lopez S; Thompsett D; Ball SC; Krzystala A; Goldbeck G; French SA
    Phys Chem Chem Phys; 2020 Mar; 22(10):5902-5914. PubMed ID: 32109268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis.
    Tao L; Huang B; Jin F; Yang Y; Luo M; Sun M; Liu Q; Gao F; Guo S
    ACS Nano; 2020 Sep; 14(9):11570-11578. PubMed ID: 32816456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning nanoparticle catalysis for the oxygen reduction reaction.
    Guo S; Zhang S; Sun S
    Angew Chem Int Ed Engl; 2013 Aug; 52(33):8526-44. PubMed ID: 23775769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts.
    Noh SH; Seo MH; Seo JK; Fischer P; Han B
    Nanoscale; 2013 Sep; 5(18):8625-33. PubMed ID: 23897215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts.
    Luo L; Zhang L; Henkelman G; Crooks RM
    J Phys Chem Lett; 2015 Jul; 6(13):2562-8. PubMed ID: 26266734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.