These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 26001493)
21. Technological limitations in obtaining and using cellulose biocomposites. Masek A; Kosmalska A Front Bioeng Biotechnol; 2022; 10():912052. PubMed ID: 36061440 [TBL] [Abstract][Full Text] [Related]
22. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Brinchi L; Cotana F; Fortunati E; Kenny JM Carbohydr Polym; 2013 Apr; 94(1):154-69. PubMed ID: 23544524 [TBL] [Abstract][Full Text] [Related]
23. Response Surface Methodology for the Optimization of Preparation of Biocomposites Based on Poly(lactic acid) and Durian Peel Cellulose. Penjumras P; Rahman RA; Talib RA; Abdan K ScientificWorldJournal; 2015; 2015():293609. PubMed ID: 26167523 [TBL] [Abstract][Full Text] [Related]
24. Comparative life cycle assessment of coffee jar lids made from biocomposites containing poly(lactic acid) and banana fiber. Rodríguez LJ; Fabbri S; Orrego CE; Owsianiak M J Environ Manage; 2020 Jul; 266():110493. PubMed ID: 32310114 [TBL] [Abstract][Full Text] [Related]
25. Effects of magnesium carbonate concentration and lignin presence on properties of natural cellulosic Cissus quadrangularis fiber composites. Siva R; Valarmathi TN; Palanikumar K Int J Biol Macromol; 2020 Dec; 164():3611-3620. PubMed ID: 32877714 [TBL] [Abstract][Full Text] [Related]
26. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Happi Emaga T; Robert C; Ronkart SN; Wathelet B; Paquot M Bioresour Technol; 2008 Jul; 99(10):4346-54. PubMed ID: 17931857 [TBL] [Abstract][Full Text] [Related]
27. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Khawas P; Deka SC Carbohydr Polym; 2016 Feb; 137():608-616. PubMed ID: 26686170 [TBL] [Abstract][Full Text] [Related]
29. Extraction of cellulose from halophytic plants for the synthesis of a novel biocomposite. Ejaz U; Shafquat Y; Sohail M; Shaikh AA; Arain MD; Ahmed T; Alanazi AK Biopolymers; 2024 Jul; 115(4):e23586. PubMed ID: 38747448 [TBL] [Abstract][Full Text] [Related]
30. The cellulose resource matrix. Keijsers ER; Yılmaz G; van Dam JE Carbohydr Polym; 2013 Mar; 93(1):9-21. PubMed ID: 23465896 [TBL] [Abstract][Full Text] [Related]
31. Use of residual banana for polyhydroxybutyrate (PHB) production: case of study in an integrated biorefinery. Naranjo JM; Cardona CA; Higuita JC Waste Manag; 2014 Dec; 34(12):2634-40. PubMed ID: 25277823 [TBL] [Abstract][Full Text] [Related]
32. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Jayaramudu J; Reddy GS; Varaprasad K; Sadiku ER; Sinha Ray S; Varada Rajulu A Carbohydr Polym; 2013 Apr; 93(2):622-7. PubMed ID: 23499104 [TBL] [Abstract][Full Text] [Related]
33. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution. Ma Y; Asaadi S; Johansson LS; Ahvenainen P; Reza M; Alekhina M; Rautkari L; Michud A; Hauru L; Hummel M; Sixta H ChemSusChem; 2015 Dec; 8(23):4030-9. PubMed ID: 26542190 [TBL] [Abstract][Full Text] [Related]
34. Biocomposites of Epoxidized Natural Rubber/Poly(lactic acid) Modified with Natural Fillers (Part I). Masek A; Cichosz S; Piotrowska M Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33808768 [TBL] [Abstract][Full Text] [Related]
35. Pervaporation of ethanol produced from banana waste. Bello RH; Linzmeyer P; Franco CM; Souza O; Sellin N; Medeiros SH; Marangoni C Waste Manag; 2014 Aug; 34(8):1501-9. PubMed ID: 24834817 [TBL] [Abstract][Full Text] [Related]
36. Micromechanical modelling of oil palm empty fruit bunch fibres containing silica bodies. Omar FN; Hanipah SH; Xiang LY; Mohammed MAP; Baharuddin AS; Abdullah J J Mech Behav Biomed Mater; 2016 Sep; 62():106-118. PubMed ID: 27183430 [TBL] [Abstract][Full Text] [Related]
37. Recent advances in sago (Metroxylon sagu) fibres, biopolymers, biocomposites, and their prospective applications in industry: A comprehensive review. Al-Fakih GOA; Ilyas RA; Huzaifah MRM; El-Shafay AS Int J Biol Macromol; 2024 Jun; 269(Pt 1):132045. PubMed ID: 38710254 [TBL] [Abstract][Full Text] [Related]
38. A novel high mechanical strength shape memory polymer based on ethyl cellulose and polycaprolactone. Bai Y; Jiang C; Wang Q; Wang T Carbohydr Polym; 2013 Jul; 96(2):522-7. PubMed ID: 23768596 [TBL] [Abstract][Full Text] [Related]
39. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. Zhou C; Shi Q; Guo W; Terrell L; Qureshi AT; Hayes DJ; Wu Q ACS Appl Mater Interfaces; 2013 May; 5(9):3847-54. PubMed ID: 23590943 [TBL] [Abstract][Full Text] [Related]
40. Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction. Lan W; Liu CF; Sun RC J Agric Food Chem; 2011 Aug; 59(16):8691-701. PubMed ID: 21749036 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]