BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 26001589)

  • 1. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape.
    Salminen A; Haapasalo A; Kauppinen A; Kaarniranta K; Soininen H; Hiltunen M
    Prog Neurobiol; 2015 Aug; 131():1-20. PubMed ID: 26001589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process.
    Salminen A; Kauppinen A; Hiltunen M; Kaarniranta K
    Ageing Res Rev; 2014 Jul; 16():45-65. PubMed ID: 24910305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process.
    Salminen A; Kaarniranta K; Hiltunen M; Kauppinen A
    Cell Signal; 2014 Jul; 26(7):1598-603. PubMed ID: 24704120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process.
    Salminen A; Kauppinen A; Kaarniranta K
    Cell Mol Life Sci; 2015 Oct; 72(20):3897-914. PubMed ID: 26118662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production.
    Gu X; Sun J; Li S; Wu X; Li L
    Neurobiol Aging; 2013 Apr; 34(4):1069-79. PubMed ID: 23141413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Abeta: a potential cause of metabolic dysfunction in Alzheimer's disease.
    Chen X; Yan SD
    IUBMB Life; 2006 Dec; 58(12):686-94. PubMed ID: 17424907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetics in Alzheimer's Disease: Perspective of DNA Methylation.
    Qazi TJ; Quan Z; Mir A; Qing H
    Mol Neurobiol; 2018 Feb; 55(2):1026-1044. PubMed ID: 28092081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between mitochondrial metabolism and oxidative stress in ischemic stroke: An epigenetic connection.
    Narne P; Pandey V; Phanithi PB
    Mol Cell Neurosci; 2017 Jul; 82():176-194. PubMed ID: 28552342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic mechanisms in Alzheimer's disease: implications for pathogenesis and therapy.
    Wang J; Yu JT; Tan MS; Jiang T; Tan L
    Ageing Res Rev; 2013 Sep; 12(4):1024-41. PubMed ID: 23688931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic mechanisms of amyloid-β production in anisomycin-treated SH-SY5Y cells.
    Guo X; Wu X; Ren L; Liu G; Li L
    Neuroscience; 2011 Oct; 194():272-81. PubMed ID: 21843603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alzheimer's disease: the quest to understand complexity.
    Marques SC; Oliveira CR; Outeiro TF; Pereira CM
    J Alzheimers Dis; 2010; 21(2):373-83. PubMed ID: 20555132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking epigenetics to lipid metabolism: focus on histone deacetylases.
    Ferrari A; Fiorino E; Giudici M; Gilardi F; Galmozzi A; Mitro N; Cermenati G; Godio C; Caruso D; De Fabiani E; Crestani M
    Mol Membr Biol; 2012 Nov; 29(7):257-66. PubMed ID: 23095054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetically regulated microRNAs in Alzheimer's disease.
    Van den Hove DL; Kompotis K; Lardenoije R; Kenis G; Mill J; Steinbusch HW; Lesch KP; Fitzsimons CP; De Strooper B; Rutten BP
    Neurobiol Aging; 2014 Apr; 35(4):731-45. PubMed ID: 24238656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation in the pathophysiology of Alzheimer's disease.
    Chouliaras L; Rutten BP; Kenis G; Peerbooms O; Visser PJ; Verhey F; van Os J; Steinbusch HW; van den Hove DL
    Prog Neurobiol; 2010 Apr; 90(4):498-510. PubMed ID: 20097254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria and Epigenetics - Crosstalk in Homeostasis and Stress.
    Matilainen O; Quirós PM; Auwerx J
    Trends Cell Biol; 2017 Jun; 27(6):453-463. PubMed ID: 28274652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic regulons in Alzheimer's disease.
    Raval M; Mishra S; Tiwari AK
    Prog Mol Biol Transl Sci; 2023; 198():185-247. PubMed ID: 37225321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic Changes in Alzheimer's Disease: DNA Methylation and Histone Modification.
    De Plano LM; Saitta A; Oddo S; Caccamo A
    Cells; 2024 Apr; 13(8):. PubMed ID: 38667333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uteroplacental insufficiency affects epigenetic determinants of chromatin structure in brains of neonatal and juvenile IUGR rats.
    Ke X; Lei Q; James SJ; Kelleher SL; Melnyk S; Jernigan S; Yu X; Wang L; Callaway CW; Gill G; Chan GM; Albertine KH; McKnight RA; Lane RH
    Physiol Genomics; 2006 Mar; 25(1):16-28. PubMed ID: 16380407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut Microbiota Composition and Epigenetic Molecular Changes Connected to the Pathogenesis of Alzheimer's Disease.
    Nagu P; Parashar A; Behl T; Mehta V
    J Mol Neurosci; 2021 Jul; 71(7):1436-1455. PubMed ID: 33829390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic drugs in Alzheimer's disease.
    Cuadrado-Tejedor M; Oyarzabal J; Lucas MP; Franco R; García-Osta A
    Biomol Concepts; 2013 Oct; 4(5):433-45. PubMed ID: 25436752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.