BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 26001655)

  • 1. Metabolic and mind shifts: from glucose to glutamine and acetate addictions in cancer.
    Corbet C; Feron O
    Curr Opin Clin Nutr Metab Care; 2015 Jul; 18(4):346-53. PubMed ID: 26001655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability.
    Wise DR; Ward PS; Shay JE; Cross JR; Gruber JJ; Sachdeva UM; Platt JM; DeMatteo RG; Simon MC; Thompson CB
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19611-6. PubMed ID: 22106302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.
    Metallo CM; Gameiro PA; Bell EL; Mattaini KR; Yang J; Hiller K; Jewell CM; Johnson ZR; Irvine DJ; Guarente L; Kelleher JK; Vander Heiden MG; Iliopoulos O; Stephanopoulos G
    Nature; 2011 Nov; 481(7381):380-4. PubMed ID: 22101433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells.
    Fendt SM; Bell EL; Keibler MA; Olenchock BA; Mayers JR; Wasylenko TM; Vokes NI; Guarente L; Vander Heiden MG; Stephanopoulos G
    Nat Commun; 2013; 4():2236. PubMed ID: 23900562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid labeling from glutamine in hypoxia can be explained by isotope exchange without net reductive isocitrate dehydrogenase (IDH) flux.
    Fan J; Kamphorst JJ; Rabinowitz JD; Shlomi T
    J Biol Chem; 2013 Oct; 288(43):31363-9. PubMed ID: 24030823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells.
    Filipp FV; Scott DA; Ronai ZA; Osterman AL; Smith JW
    Pigment Cell Melanoma Res; 2012 May; 25(3):375-83. PubMed ID: 22360810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation.
    Corbet C; Pinto A; Martherus R; Santiago de Jesus JP; Polet F; Feron O
    Cell Metab; 2016 Aug; 24(2):311-23. PubMed ID: 27508876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose: an ex vivo 13C NMR spectroscopic study.
    Hassel B; Sonnewald U; Fonnum F
    J Neurochem; 1995 Jun; 64(6):2773-82. PubMed ID: 7760058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamine metabolism in AS-30D hepatoma cells. Evidence for its conversion into lipids via reductive carboxylation.
    Holleran AL; Briscoe DA; Fiskum G; Kelleher JK
    Mol Cell Biochem; 1995 Nov; 152(2):95-101. PubMed ID: 8751155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxylation and anaplerosis in neurons and glia.
    Hassel B
    Mol Neurobiol; 2000; 22(1-3):21-40. PubMed ID: 11414279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR spectroscopic studies of 13C acetate and 13C glucose metabolism in neocortical astrocytes: evidence for mitochondrial heterogeneity.
    Sonnewald U; Westergaard N; Hassel B; Müller TB; Unsgård G; Fonnum F; Hertz L; Schousboe A; Petersen SB
    Dev Neurosci; 1993; 15(3-5):351-8. PubMed ID: 7805589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ratio of acetate-to-glucose oxidation in astrocytes from a single 13C NMR spectrum of cerebral cortex.
    Marin-Valencia I; Hooshyar MA; Pichumani K; Sherry AD; Malloy CR
    J Neurochem; 2015 Jan; 132(1):99-109. PubMed ID: 25231025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: overview and application.
    Yoshii Y; Furukawa T; Saga T; Fujibayashi Y
    Cancer Lett; 2015 Jan; 356(2 Pt A):211-6. PubMed ID: 24569091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate.
    Zhao S; Jang C; Liu J; Uehara K; Gilbert M; Izzo L; Zeng X; Trefely S; Fernandez S; Carrer A; Miller KD; Schug ZT; Snyder NW; Gade TP; Titchenell PM; Rabinowitz JD; Wellen KE
    Nature; 2020 Mar; 579(7800):586-591. PubMed ID: 32214246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.
    Yang C; Ko B; Hensley CT; Jiang L; Wasti AT; Kim J; Sudderth J; Calvaruso MA; Lumata L; Mitsche M; Rutter J; Merritt ME; DeBerardinis RJ
    Mol Cell; 2014 Nov; 56(3):414-424. PubMed ID: 25458842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch.
    Zhao S; Torres A; Henry RA; Trefely S; Wallace M; Lee JV; Carrer A; Sengupta A; Campbell SL; Kuo YM; Frey AJ; Meurs N; Viola JM; Blair IA; Weljie AM; Metallo CM; Snyder NW; Andrews AJ; Wellen KE
    Cell Rep; 2016 Oct; 17(4):1037-1052. PubMed ID: 27760311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free CoA-mediated regulation of intermediary and central metabolism: an hypothesis which accounts for the excretion of alpha-ketoglutarate during aerobic growth of Escherichia coli on acetate.
    El-Mansi M
    Res Microbiol; 2005 Sep; 156(8):874-9. PubMed ID: 16171983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of acetate by Beggiatoa.
    Burton SD; Morita RY; Miller W
    J Bacteriol; 1966 Mar; 91(3):1192-200. PubMed ID: 5929751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C isotope-assisted methods for quantifying glutamine metabolism in cancer cells.
    Zhang J; Ahn WS; Gameiro PA; Keibler MA; Zhang Z; Stephanopoulos G
    Methods Enzymol; 2014; 542():369-89. PubMed ID: 24862276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.